LORD TECHNICAL NOTE

V-Link-200 Using A Load Cell

The V-Link-200 is an 8-channel wireless analog sensor node with 4 differential input channels (strain channels) designed to support strain gauges and load cells.

An S Beam Load Cell with a 50 pound capacity and 3 mV/V sensitivity is being used for this example.

This technical note presents a step-by-step approach to connecting the load cell to the V-Link- 200, calibrating the load cell, and operating the system. Familiarity with the V-Link-200, SensorConnect software and load cell operation is assumed.

Wiring Connection

The load cell presents a 5 foot, polyurethane sheathed, shielded, connection cable with 4 flying leads.

1. Connect load cell leads to V-Link-200 as shown below.

Reference	Connection	V-Link-200
Red	EXC+	SP+
Green	SIG+	S#+
White	SIG-	S#-
Black	GND	GND

Figure 1 - Load Cell Leads and Wiring

2. Download the Mv/V to Engineering Unit at: http://microstrain.com/sites/default/files/mv_v_to_eu_ bit.xlsx.

3. Enter the load cell specifications, 3 mV/V, 50 lbs, into the calculator.

mV/V	to Engir	eering unit/bit								
A to D converter:	A to D converter: 18 Bit ADC bit				XRS V-Link			V-Link 200		
load capacity of sensor:	50	Engineering unit (EU)		12 and	16 bit		18 bit			
Sensor Sensitivity @ factory:	3.000	mV/V	1	3.000 V ex	citation		4.096 excitation			
Node Excitation Voltage:	4.096	Volts		mV Range	Gain		mV Range	Gain		
Full load voltage:	12.288	mV (3 x 4096)		±70mV	21		±156 mV	16		
Optimal gain for full load:	203	5000/ 24.576(rounded down)		±50mV	30		±78.1 mV	32		
User Set Gain:	±19.5 mV	Gain = 128 Refer to tables		±20mV	75		±39.0 mV	64		
Max Full Scale Input Voltage:	39.063	mV (5000 / 128)		±10mV	147		±19.5 mV	128		
Full scale sensor range:	158.946	EU (39.063 x (50 x 2) / (12.288 x 2)		±5mV	291		±9.76 mV	256		
Slope:	0.000606	EU/Bit (158.946 / 262144)		±2.5mV	569		±4.88 mV	512		
Offset for High-scale:	-119.21		±1mV	1214		±2.44 mV	1024			
Offset for Mid-scale:	-79.47	Offset for the three scaling levels ±600µV	2222		±1.22 mV	2056				
Offset for Low-scale:	-39.74			±350µV	3799					
				±100µV	13074					
		denotes user definable values								
		denotes values to enter into SensorConnect								
						Effectiv	e Range			
1. Select the resolution of the de	vice A to D conv	erter from drop down list		High-scale N		Mi	Mid-scale L		Low-scale	
2. Enter the capacity of the sense	or (if sensor shows +,	/- use only the + value)		39.7	74	79.47		198.68		
3. Enter the sensors sensitivity (v	vill be shown as	mV/V)		-119	.21	-7	9.47	-39.74		
4. Enter the excitation voltage (3.	.0V for XRS, 4.09	5V for V-Link 200, or external set V								
 Use the Optimal Set Gain to ch selected into <u>User Set Gain</u> field or high scale balancing will accon 	oose a range/ga . Refer to the Eff nadate the sense	in from one of the tables. Enter the gain fective Range table above to see if a higher gain with low yr.								
6. Enter the Slope in yellow into	SensorConnect S	lope field								
7. Enter the offset in yellow that	corresponds to t	he balance level used into SensorConnect offset field								

Figure 2 - Load Cell Capacity and Sensitivity Settings

4. From the Effective Range, it is recommended that the Mid-Scale and Low-Scale balancing be set in the +/-19.5 mV range. For better resolution, the +/-9.76 mV range may be set for the Low-Scale. The Calculator shows the Slope as 0.000303 and the Low-Scale at -19.87.

mV/V	to Engin	eering unit/bit								
A to D converter:	A to D converter: 18 Bit ADC bit					XRS V-Link			200	
load capacity of sensor: 50 Engineering unit (EU)				12 and	16 bit		18 b	18 bit		
Sensor Sensitivity @ factory:	3.000	mV/V		3.	000 V ex	citation		4.096 excitation		
Node Excitation Voltage:	4.096	Volts		mV	Range	Gain		mV Range	Gain	
Full load voltage:	12.288	mV (3 x 4096)		±70m	v	21		±156 mV	16	
Optimal gain for full load:	203	5000/ 24.576(rounded down)		±50m	v	30		±78.1 mV	32	
User Set Gain:	±9.76 mV	 Gain = 256 Refer to tables 		±20m	v	75		±39.0 mV	64	
Max Full Scale Input Voltage:	19.531	mV (5000 / 256)		±10n	v	147		±19.5 mV	128	
Full scale sensor range:	70 / 72	EU (19.531 x (50 x 2) / (12.288 x 2)		±5m\	/	291		±9.76 mV	256	
Slope:	0.000303	EU/Bit (79.473 / 262144)		±2.5r	nV	569		±4.88 mV	512	
Offset for High-scale:	-59.00	Offset for the three scaling levels		±1m	/	1214		±2.44 mV	1024	
Offset for Mid-scale:	-39.74		±600	μV	2222		±1.22 mV	2056		
Offset for Low-scale:	-19.87		±350µV		μV	3799				
				±100	μV	13074				
		denotes user definable values								
		denotes values to enter into SensorConnect			_					_
							Effectiv	e Range		
1. Select the resolution of the de	vice A to D conve	erter from drop down list		High-scale M		Mic	Mid-scale Lov		cale	
2. Enter the capacity of the senso	r (if sensor shows +/	- use only the + value)		19.87		3	39.74		99.34	
3. Enter the sensors sensitivity (v	vill be shown as r	mV/V)		-59.60 -39.74		9.74	-19.87			
4. Enter the excitation voltage (3.	0V for XRS, 4.096	V for V-Link 200, or external set V								
5. Use the Optimal Set Gain to ch selected into <u>User Set Gain</u> field. or high scale balancing will accon	oose a range/gai Refer to the Eff nadate the senso	in from one of the tables. Enter the gain ective Range table above to see if a higher gain with low r.								
6. Enter the Slope in yellow into	SensorConnect S	lope field								
7. Enter the offset in yellow that	corresponds to t	he balance level used into SensorConnect offset field								

Figure 3 - Load Cell Effective Range Settings

Sensor Configuration

- 5. Launch the SensorConnect software, select Configuration > Hardware
- 6. Under Input Range, select ±9 milliVolts range from the Channel 1 drop down window.

Input Range			
	Channel(s)	Input Range	
	1	±9 milliVolts	~

Figure 4 - Input Range

7. Under Hardware Offset, with no load on the cell, select Low (25%) from the Balance Target drop down window, then select Auto Balance. In the blue box, the target achieved should be $\pm 25\%$. If this reading varies by more than 2-3%, confirm the wiring is secure and there is no load on the load cell. After making adjustments, retry Auto-Balance.

Hardware Offset				
	Channel(s)	Offset	Balance Target	
	1	235	Low (25%) 🔻	Auto Balance
		Auto balance complete (achieved: 25.02%)		

Figure 5 - Auto Balance

8. Under Calibration, Enter the Slope and Offset from the calculator, select Pound from the Unit drop down window, and select Apply Configuration.

Hardware		Calibration	Sampling
—Linear Calibra	ition		
Channel(s) Slope		Offset	Unit
1	0.000303	-19.87	Pound 👻

Figure 6 - Calibration

Verify No-Load is at Zero Pounds

- 9. Collect data to verify no-load is at zero pounds.
- 10. If it is not at zero pounds, multiply the value by -1 and add or subtract from the offset.
 - $-0.438610 \times -1 = 0.438610$

-19.97 + 0.438610 = -19.43139

Hardware		Calibration			Sampling		
Linear Calibra Channel(s)	Slope		Offset		Unit		
1	0.000303	0000079888	-19.4313907	7623291	Pou	ind	*

Figure 7 - No Load Data Collection

11. Collect data to verify no-load is at 0 pounds.

Figure 8 - No-Load at Zero

LORD Corporation MicroStrain® Sensing Systems 459 Hurricane Lane , Suite 102 Williston, VT 05495 USA

ph: 802-862-6629 sensing_sales@LORD.com sensing_support@LORD.com