The 3DM®GX5-GNSS/AHRS all-in-one navigation solution features a high performance integrated multi-constellation GNSS receiver utilizing the GPS, GLONASS, BeiDou, and Galileo satellite constellations. Sensor measurements are fully calibrated, temperature-compensated, and mathematically-aligned to an orthogonal coordinate system for highly accurate outputs.
The 3DM-GX5-35 provides an economical combination of AHRS and GNSS outputs for use in customer supplied Kalman Filters.
Datasheet
Manual
The 3DM-GX5-35 provides an economical combination of AHRS and GNSS outputs for use in customer supplied Kalman Filters.
The MicroStrain 3DM®GX5-GNSS/INS all-in-one navigation solution features a high performance integrated multi-constellation GNSS receiver utilizing the GPS, GLONASS, BeiDou, and Galileo satellite constellations. Sensor measurements are fully calibrated, temperature-compensated, and mathematically-aligned to an orthogonal coordinate system for highly accurate outputs. The highly linear sensor performance and auto-adaptive estimation filter algorithm produces highly accurate computed outputs under real-world dynamic conditions.
Datasheet
The 3DM®-GQ4-45 is a compact, tactical-grade all-in-one navigation solution with an integrated multi-constellation GNSS receiver utilizing the GPS, GLONASS, BeiDou, and Galileo satellite constellations. Sensor measurements are fully calibrated, temperature-compensated, and mathematically-aligned to an orthogonal coordinate system. The highly linear sensor performance and auto-adaptive estimation filter algorithm produces extremely accurate computed outputs under real-world dynamic conditions.
Datasheet
Manual
**Limited Availability**
The 3DM®RQ1-GPS/INS is a compact, ruggedized, aerospace tactical-grade navigation and IMU solution with integrated GPS and magnetometers, high noise immunity, and exceptional performance. It takes advantage of some of the latest MEMs sensor technology combined with LORD’s 4th generation precision calibration and temperature compensation capability and combines it with a custom made Kalman Filter to deliver capabilities that rival units that cost many times more.
Datasheet
Manual
Best in Class Performance
- Fully calibrated, temperature-compensated, and mathematically-aligned to an orthogonal coordinate system for highly accurate outputs
- High-performance, low-drift gyros with noise density of 0.005°/sec/√Hz and VRE of 0.001°/s/g2RMS
- Accelerometer noise as low as 25 ug/√Hz
Ease of Use
- Easy integration via comprehensive and fully backwards-compatible communication protocol
Cost Effective
- Out-of-the box solution reduces development time
- Volume discounts
Best in Class Performance
- Fully calibrated, temperature-compensated, and mathematically-aligned to an orthogonal coordinate system for highly accurate outputs
- High performance, low drift gyros with noise density of 0.005°/sec/√Hz and VRE of 0.001°/s/g²2RMS
- Accelerometer noise as low as 25 µg/√Hz
- Common protocol between 3DM®-GX3, GX4, RQ1, GQ4, GX5, and CV5
Ease of Use
-
Automatic magnetometer calibration and anomaly rejection eliminates the need for field calibration
-
Automatically compensates for vehicle noise and vibration
- Easy integration via comprehensive and fully backward-compatible communication protocol
Cost Effective
- Out-of-the-box solution reduces development time
- Volume discounts
Best in Class Performance
- Fully calibrated, temperature-compensated, and mathematically aligned to an orthogonal coordinate system for highly accurate outputs
- Bias tracking, error estimation, threshold flags, and adaptive noise, magnetic, and gravitational field modeling allow for fine tuning to conditions in each application
- High performance, low drift gyros with noise density of 0.002°/sec/√Hz and VRE of 0.001°/s/g2RMS
- Smaller and lighter than most tactical grade GNSS/INS units
-
Ease of Use
- User-defined sensor-to-vehicle frame transformation
- Easy integration via comprehensive SDK
- Common protocol between 3DM-GX3, GX4, RQ1, GQ4, GX5, and CV5
-
Cost Effective
- Out-of-the box solution reduces development time
- High performance tactical grade outputs at an industrial grade price
Best in Class Performance
- Fully calibrated, temperature compensated, and mathematically aligned to an orthogonal coordinate system for highly accurate outputs
- Bias tracking, error estimation, threshold flags, and adaptive noise, magnetic, and gravitational field modeling allow for fine tuning to conditions in each application.
- Compact, low profile, and lightweight
Ease of Use
- Easy integration via comprehensive SDK
- Common protocol between 3DM-GX3, GX4, RQ1, GQ4, GX5, and CV5
Cost Effective
- Out-of-the box solution reduces development time.
- Volume discounts
Sensor
- Multi-Constellation receiver tracks up to 32 satellites
-
High Performance Accelerometer
- 25 µg/√Hz (8g option)
- 80 µg/√Hz (20g option)
-
Super-stable Gyro
- 8 dph in-run bias (-40 to +85°C)
- Offset temperature hysteresis 0.05°/s
- ARW 0.3°/√hr
Operation
- Adjustable sampling rates up to 500Hz
- Independently configurable IMU and GNSS outputs
- Forward compatible MIP Protocol optimizes bandwidth
- SensorConnect software for configuration, control, display, and logging
Package
- CNC Anodized Aluminum
- Precision alignment features
- Highly compact and low profile
- 44.2 mm x 36.6 mm x 11 mm
- 20.0 grams
- USB and RS-232 (up to 921600 BAUD)interfaces
- –40 to +85 °C operating temperature range
Sensor
- Multi-Constellation receiver tracks up to 32 satellites
-
High Performance Accelerometer
- 25 µg/√Hz (8g option)
- 80 µg/√Hz (20g option)
-
Super-stable Gyro
- 8 dph in-run bias (-40 to +85°C)
- Offset temperature hysteresis 0.05°/s
- ARW 0.3°/√hr
- Pitch-roll Dynamic Accuracy ±0.2°
Operation
- Adjustable sampling rates up to 500Hz
- 34 state auto-adaptive EKF
- Independently configurable IMU, GNSS, EKF outputs
- Forward compatible MIP Protocol optimizes bandwidth
- SensorConnect software for configuration, control, display, and logging
Package
- CNC Anodized Aluminum
- Precision alignment features
- Highly compact and low profile
- 44.2 mm x 36.6 mm x 11 mm
- 20 grams
- USB and RS-232 interfaces
- –40 to +85 °C operating temperature range
Sensor
- Multi-Constellation receiver tracks up to 32 satellites
-
High Performance Accelerometer
- 50 µg/√Hz (+-5g option)
-
Super-stable Gyro
- 5 dph in-run bias (-40 to +85°C)
- Non-linearity ±0.02% fs
- ARW 0.2 °/√hr
- Attitude repeatability 0.1°
Operation
- Adjustable sampling rates up to 500Hz
- 34 state auto-adaptive EKF
- Independently configurable IMU, GNSS, EKF outputs
- Forward compatible MIP Protocol optimizes bandwidth
- SensorConnect software for configuration, control, display, and logging
Package
- Anodized Aluminum
- Precision alignment features
- Highly compact and low profile
- 76.2mm x 65.4mm x 18.9mm
- 105 grams
- USB and RS-232 interfaces
- –40 to +85 °C operating temperature range
Sensor
- 50-channel GPS receiver
-
High Performance Accelerometer
- 50 µg/√Hz (+-5g option)
-
Super-stable Gyro
- 5 dph in-run bias (-40 to +85°C)
- Non-linearity ±0.02% fs
- ARW 0.2 °/√hr
- Attitude repeatability 0.1°
Operation
- Adjustable sampling rates up to 500Hz
- Independently configurable IMU, GPS, EKF outputs
- Forward compatible MIP Protocol optimizes bandwidth
- SensorConnect software for configuration, control, display, and logging
Package
- Alodine Aluminum
- DO-160G environmental rating
- Precision alignment features
- Highly compact and low profile
- 88.3mm x 76.2mm x 22.0mm
- 205 grams
- RS422 (9600 bps to 460,800 bps)
- –40 to +85 °C operating temperature range (-50 °C optional)
- MTBF 180,000 hours (Telcordia method I, AC/30C)
General Documentation
General Documentation
Technical Notes
- Product Comparison: GX5 Series vs. GV7 Series
- Migrating from 3DM-GX4 to 3DM-GX5 Series
- Using a GX5 with Bluetooth RS-232 Adapter
- Auto-Adaptive Dynamic Roll & Pitch Performance
- When to use “Capture Gyro Bias”
- Inertial Product Comparison
- Inertial Sensor Utils User Manual
- Using a Hardware Datalogger with Inertial Sensors
General Documentation
General Documentation
Technical Notes
- ROHS Certificate
- Inertial product comparison
- Inertial Sensor Utils User Manual
- Using an Hardware Datalogger with Inertial Sensors
- Selecting a Gyroscope Option
- Using a Marine-Grade GPS Antenna
- When to use “Capture Gyro Bias”
- Auto-Adaptive Dynamic Roll and Pitch Performance
- Overview of All Inertial Products
Software/Firmware
More
- Tallysman TW4721 GNSS Antenna Datasheet
- Micro D-to-USB Communication and Power Cable
- Micro D-to-RS232 Communication and Power Cable
- PSA-05R-090 9 Volt DC Power Supply for RS-232 Cable
- Craft Cable with Micro DB9 and Flying Leads
- 3DM-GX5-35 Drawing (STP File)
- Dewesoft Inertial Sensor Manual
- 6212-3000 CONNECTIVITY KIT, RS232, GNSS
- 6212-3002 CONNECTIVITY KIT USB, GNSS
Software/Firmware
More
- Tallysman TW4721 GNSS Antenna Datasheet
- Micro D-to-USB Communication and Power Cable
- Micro D-to-RS232 Communication and Power Cable
- PSA-05R-090 9 Volt DC Power Supply for RS-232 Cable
- Craft Cable with Micro DB9 and Flying Leads
- 3DM-GX5-45 Drawing (STP File)
- 3DM-GX5-45 Dimensional Drawing with Sensor Origin
- Dewesoft Inertial Sensor Manual
- 6212-3000 CONNECTIVITY KIT, RS232, GNSS
- 6212-3002 CONNECTIVITY KIT USB, GNSS