
Development of an Energy Model for Quadcopter Package Delivery
Drones

Thiago A. Rodrigues1, Jay Patrikar2, Bastian Wagner3, Sebastian Scherer2, Constantine Samaras1

Abstract— The paper presents analytical models to estimate
the energy usage of drone-based system focused towards last-
mile delivery operations in urban areas. The detailed model
also explicitly takes into account factors like wind that make
it more suitable for real world deployment. Experimental test
are conducted to collect data to regress the coefficients of the
analytical results and accuracy is reported.

I. ENERGY MODEL

The energy model developed takes into account a first-
principle analysis based on helicopter aerodynamics. All
the components were considered regarding the drone’s body
frame as described next.

A. Coordinate Frames

There are many coordinate frames that can be used to
understand the dynamic behavior of a UAV ([?]. For this
study we will work with the inertial frame, vehicle frame,
body frame, stability frame and wind frame

The inertial frame has a fixed latitude-longitude origin and
uses the North-East coordinates as i and j directions and the
z axis towards the center of the Earth (Figure 1). Similarly,
the vehicle frame uses the same the north-east-center-of-the-
earth directions, but with its origin fixed on the UAV’s center
of mass (G) (Figure 2).

Fig. 1. Inertial Frame

The body frame, on the other hand, considers the i, j and z
directions regarding the the body of the aircraft. For instance,
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Fig. 2. Vehicle Frame

the x axis was defined as the direction along the power button
and the mass center of the drone used (Matrice 100). The
angle between the iv (North) and ib on the ivGjv plane is
defined as ψ (Figure 3a). The angle between ib and iv on
the ivGkv plane is defined as θ (Figure 3b). Finally, the
angle between jv and jb on the jvGkv plane is defined as
φ (Figure 3c).

The stability frame correspond to the frame of air sur-
rounding the aircraft. The airspeed vector (Va), defined as
the difference between the ground velocity (Vg) and the wind
velocity (Vw) flows through the aircraft at a isGjs plane, that
is rotated from the body frame reference by α, the angle of
attack. Finally, the wind frame assumes the i axis flowing
throughout the airspeed vector. The angle between is and Va
is defined as β (Figure 4).

With the main working frames described, it is possible to
transcribe any vector written as A = axi + ayj + azk from
frame F 0 to frame F 1 using a rotation matrix (R1

0).

A1 = R1
0A

0 (1)

For this work, we have established the body frame as
the standard working frame. Therefore, all vectors were
transcribed to the body frame using the following rotation
matrices.

From the vehicle frame to the body frame (Rbv) the rotation
matrix is given as:

Rbv =

 cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ − sφsψ cφcθ


Where cθ, cψ and cφ are the cosines of the angles θ, ψ

and φ, respectively, and sθ, sψ and sφ are the sines of the
angles θ, ψ and φ, respectively.



Fig. 3. Body Frame

Fig. 4. Stability and Wind Frame

The transformation from the stability frame to the body
frame is given by the matrix Rbs:

Rbs =

 cos(α) 0 −sin(α)
0 1 0

sin(α) 0 cos(α)


And the transformation from wind frame to the body frame

is given by the matrix Rbw:

Rbw =

 cos(β)cos(α) −sin(β)cos(α) −sin(α)
sin(β) cos(β) 0

cos(β)sin(α) −sin(β)sin(α) cos(α)


B. First Principle Analysis

The power required (P) by a quadcopter drone can be
divided into induced power (Pi), profile power (Pp), parasitic
power (Pd) and ancillary power (Pa).

P = Pi + Pp + Pd + Pa (2)

1) Induced Power: The induced power(Pi) represents the
power required to overcome the force of gravity to keep the
aircraft in the air. The Pi can vary according to the flight
maneuver (Rotaru and Todorov 2017). In order to calculate
Pi it is necessary to understand how Thrust (T) is estimated
for a drone propeller. Most of the current models provide
T for a 2D approach, where β = 0 (Figure 5), so that T is
given as:

T = 2ρAvi
√

(Vaircos(α)2 + (Vairsin(α) + vi)2 (3)

where, ρ = air density; vi = induced velocity; Vair =
airspeed vector; and A = total area covered by the propellers.

A = MπR2 (4)

where, M = number of propellers; R = radius of the
propeller.

Fig. 5. Thrust, β = 0

However, once β > 0, T must be recalculate. Using the
same approached used by Rotaru and Todorov (2017), and
adding β to the relative position of the air flowing through
the aircraft, T becomes a resultant of a three-dimension force
system (Figure 6).

Therefore, T might be calculated as:

T = 2ρAvi
√
V 2
air

jbkb
+ V 2

air
ibkb

+ (Vair
ibjb

+ vi)2 (5)

where, Vair
ibjb

represents the airspeed vector flowing
perpendicularly to the propeller, and Vair

jbkb
and Vair

ibkb

the components acting on the propellers plane. They can be
written as a function of Vair, α and β:



Fig. 6. Thrust, β > 0

Vair
jbkb

= Vair

√
sin2 (α) sin2 (β)− sin2 (β)

sin2 (α) sin2 (β)− 1
(6)

Vair
ibkb

= Vair
cos (α) cos (β)√

sin2 (α) cos2 (β) + cos2 (α)
(7)

Vair
ibjb

= Vair

√
sin2 (α) sin2 (β)− sin2 (α)

sin2 (α) sin2 (β)− 1
(8)

Therefore, Pi for a moving forward flight regime is:

Pi = T

(
Vair

√
sin2 (α) sin2 (β)− sin2 (α)

sin2 (α) sin2 (β)− 1
+ vi

)
(9)

T can be calculated as a function of θ, φ and the Rotor
Lift (L), which in turn can be found as a function of the
drone’s weight (W), the Wind Force and the angles θ and φ.

T = L

√
sin2 (φ) cos2 (θ) + cos2 (φ)

cos2 (φ) cos2 (θ)
(10)

Assuming a constant Vair, L is:

L = W + Fdrag,Wind

√
cos2 (φ) cos2 (θ)

sin2 (φ) cos2 (θ) + cos2 (φ)
(11)

where, W is the drone’s weight (W = mg) and Fdrag,Wind

is the drag caused by the wind blowing perpendicularly to
the propellers.

Fdrag,Wind =
CdsupρAsupV

2
air

ibjb

2
(12)

where, Cdsup is the drag coefficient of the air blowing
through the drone’s upper surface (Figure 3a), ρ is the air
density, Asup is the reference area and Vair

ibjb
is the airspeed

vector blowing perpendicularly the propeller.
Therefore, vi can be calculated through the implicit equa-

tion:

vi =

T
2ρA√

V 2
air

jbkb
+ V 2

air
ibkb

+ (Vair
ibjb

+ vi)2
(13)

During a hovering condition α = 90◦, β = 0◦ and Vair =
0. Therefore, Pi will depend only on the induced velocity
(vi) and thrust (T).

Pi = T · vi (14)

vi for hovering can be simplified as:

vi =

√
T

2ρA
(15)

For a steady take off regime, α = 90◦ and β = 0◦. Thus,
Pi can be defined as:

Pi = T (vi + Vair) (16)

vi for a take off regime can be defined as:

vi = −Vair
2

+

√
V 2
air

4
− T

2Aρ
(17)

For a rapid steady landing regime, with α = 90◦, β = 0◦

and |Vair| ≥ 2
√

T
2ρA , Pi can be defined as:

Pi = T (vi + Vair) (18)

and,

vi = −Vair
2

+

√
Vair

2

2

+
T

2ρA
(19)

Table 1 shows a summary of the Pi forms,

2) Profile Power: The Profile Power (PP ) represents the
power necessary to overcome the drag from the rotating
propeller blades (Liu, Sengupta, and Kurzhanskiy 2017). Pp
for a hover regime is calculate as:

Pp,hover =
NccdbladeρR

4

8
Ω3 (20)

where, N = number of blades in a single propeller; c =
blade chord width; cdblade = drag coefficient of the blade; Ω
= angular speed

For a horizontal flight, Pp becomes:

Pp = Pp,hover(1 + µ2) (21)

where, µ = advance ratio for the propeller;

µ =

√
V 2
air

jbkb
+ V 2

air
ibkb

RΩ
(22)

Assuming that thrust is linearly proportional to the angular
speed squared (T = kΩ2), where k is a scaling factor



TABLE I
INDUCED POWER

Regime Induced Power (Pi) Induced Velocity (vi)
Hover Pi = T · vi vi =

√
T

2ρA

Steady Take Off Pi = T (vi + Vair) vi = −Vair
2

+

√
V 2
air
4

− T
2Aρ

Rapid Landing Pi = T (vi + Vd) vi = −Vair
2

+

√
Vd
2

2
+ T

2ρA

Cruise Pi = T

(
Vair

√
sin2 (α) sin2 (β)−sin2 (α)

sin2 (α) sin2 (β)−1
+ vi

)
vi =

T
2ρA√

V 2
air

jbkb
+V 2

air
ibkb

+(Vair
ibjb

+vi)2

converting rotor angular speed to thrust, the total profile
power is

PP =
M∑
i=1

(
NccdbladeρR

4

8
Ω3(1 + µ2)

)
(23)

PP = c2T
3/2 + c3

(
V 2
air

jbkb
+ V 2

air
ibkb

)
T 1/2 (24)

where, c2 = NccdbladeρR
4

8k3/2
and c3 = NccdbladeρR

2

8k1/2

3) Parasitic Power: The parasitic power (Pd) is the power
required to overcome the drag force resulting from the
movement of the multicopter body through the air.

Pd =
∑

F bdragV
b
air (25)

Where, Fdraĝb= drag force on the multicopter body, and
V bair = airspeed vector acting on the body frame.

F bdrag =
1

2
CbdρA

b
ref (V bair)

2 (26)

Where, Cbd = drag coefficient of the drone’s body; Abref
= reference area

Therefore,

Pd =
∑ 1

2
CbdρA

b
ref (V bair)

3 (27)

Pd will be, therefor, a sum of three parasitic powers,
Pd

ibkb
, Pdjbkbd and Pdibjb .

4) Ancillary Power: The ancillary power (Pa) is the
power required to run all the electronic devices and sensors
used for the flight navigation systems and data collection.

Although Pa may vary under extreme operation condi-
tions, such as extreme high or low temperatures, it has been
assumed that the Pa will be relatively constant throughout
the flight as long as the number and specifications of the
electronic devices and sensors remain the same.

5) Energy Efficiency: The energy efficiency of travel (e)
is calculated dividing the total power (P) by the ground speed
of the drone (Vg) (Stolaroff et al. 2018):

e = P/Vg (28)

And the total energy consumed for a delivery trip:

E = (eloaded + eunloaded)d
v (29)

Where, dv = one-way distance (Inertial Frame)

II. EXPERIMENT

A series of flights was performed to empirically measure
the energy consumption of a quadcopter UAV in order
to evaluate the accuracy of the energy model developed.
An experimental protocol (Appendix A) was created and
followed to ensure a reliable approach for data acquisition.

A quadcopter DJI Matrice 100 (M100) was equipped
with a sensor suite to measure the energy usage. We use
a FT Technologies FT205 UAV-mountable, pre-calibrated
ultrasonic wind sensor. The sensor is accurate up to±0.1m/s
and has a refresh rate of 10Hz. The on-board current and
voltage are measured using a Mauch Electronics PL-200
sensor. This sensor is based on the Allegra ACS758-200U
hall current sensor, and can record currents up to 200A
and voltages up to 33V. We record the state of the system
(position/velocity/orientation) using the 3DM −GX5− 45
GNSS/INS sensor pack. These sensors use a built-in Kalman
filtering system to fuse the GPS and IMU data. The sensor
was capped at to an output rate of 10Hz. The flights were
performed in a pre-established route (Figure 9) varying
altitude (25 m, 50 m, 75 m and 100 m), speed (4 m/s, 6
m/s, 8 m/s, 10 m/s and 12 m/s) and payload weight (no
payload, 250g and 500 g). Each combination was repeated
three times, totaling 180 flights. Figures 7 and 8 show the
experimental platform and the sensor suite respectively.

III. DATA ANALYSIS

The data provided by each sensor were synchronized to a
frequency of approximately 5Hz using the ApproximateTime
message filter policy of ROS.

A. Defining Flight Regime Intervals

The combined data had then to be divided into the
different flight regimes for a better analysis of the energy
consumption for each stage. Given the high number of flights
performed an algorithm was created to automatically identify
the time interval were the flight was under Take-Off, Cruise
or Landing regime.

An example of the drone’s altitude versus time (Figure 10)
shows very clearly when all the three flight regimes occur.



Fig. 7. The test platform

Fig. 8. The sensor suite

The steady climbing movement in the first part of the flight
represents the Take-Off regime. The relative constant altitude
in the middle of the graphic correspond to the Cruise regime.
Lastly, the steady decent movement at the end of the flight
represents the Landing regime.

Although defining the interval where the three regimes
occur seems to be quite intuitive for human eyes, the inherent
variability of the data provided by the GPS make the process
less efficient for an algorithm. Therefore, a Gaussian Filter
was applied to the data in order to reduce eventual noises. A
sigma of 5 was used, as it reflects approximately the accuracy
of the GPS measurements. The result (Figure 11), is much

Fig. 9.

Fig. 10. Altitude over time

smoother curve.
Once the Gaussian filter is applied to the altitude curve,

the first derivative provides the points of maximum and
minimum altitude variations (Figure 12) that will be used
to define the beginning and ending of each regime.

Then, it was established that the Take-Off regime would
start when the slope reached 0.05 for the first time at
the beginning of the flight. Moreover, the Take-Off regime
would finish once the slope reached 0 (zero), parting from
the maximum slope point. Similarly, the beginning of the
Landing regime was defined to be the first time the slope
reached 0 moving backwards from the minimum slope point,
and the finishing point of the Landing regime when the
slope reached 0 moving forward from the minimum slope
point. The Cruise regime is defined between the Take-Off
and Landing regimes.

The result, shown in Figure 13, allows the automatic
identification of the time interval where the three flight
regimes throughout the flights.



Fig. 11. Gaussian filter applied to a portion of the altitude data

Fig. 12. First derivative of the altitude over time

Fig. 13. Flight Regimes

B. Energy Model Validation

Multiple parameters are needed for the model to depict
the real world. Because these parameters are unknown, one
has to estimate these parameters based on real-world test
data. This section describes the method used to regress these
parameters.

1) Least Squares Method: The goal of this method is to
variate the parameters of a model in such a way that the sum
of the squared distances of the model generated data and the
measured data is minimized. This can be expressed with the
following formula:

D =
n∑
i=1

[yi − f(~xi, ~β)]2 (30)

with yi being the measured value at i, f(~xi, ~β) being the
function of the model and ~β being a vector containing the
parameters of the model and ~xi being a vector of input
variables for the model at i.
To actually estimate the parameters using this method, partial
derivatives of D with respect to each parameter in ~β has to be
taken and solved for zero. The derivatives can be represented
using an Jacobian matrix.

This matrix can be used in the Levenberg-Marquadt
algorithm to estimate the parameters. Implementations of
the algorithm also estimate the Jacobian matrix due to
the complexity this matrix can assume. When finding the
minimum sum of a squared function with one or multiple
parameters, such as the least squares function described
above, multiple algorithms can be used to find the optimal
parameters minimizing this sum. One of these algorithms is
the Levenberg-Marquardt algorithm. It combines the Gauss-
Newton and Gradient-Descent algorithms to compute the
parameters faster and with greater accuracy compared to only
using one of the algorithms. As the other algorithms, the
Levenberg-Marquardt algorithm only finds a local minimum
which might change depending on the initial parameter
guesses. This is due to the algorithm only checking in the
vicinity of the initial guess.

[JTWJ + λI]hlm = JTW (y − ŷ) (31)

The equation 31 describes a step of the Levenberg-Marquardt
algorithm. The leftmost part in the bracket is the Gaussian
part of the algorithm, accompanied by the Gradient-Descend
part of the algorithm. The factor λ is either in- or decreased
in each step based on the whether the solution gets more
optimal or not. In normal conditions, the factor is decreased
in each iteration but will be increased when the solution
gets worse. The higher λ is, the higher the influence of the
gradient descend part will be.

C. Discussions

The gathered data shows that the average power con-
sumption for each flight, depending on the altitude, speed
and payload, lies between 700W and 800W. During the
analysis of the data it became clear that the data provided
by the sensor has a high fluctuation and therefore had to



Fig. 14. Lowest average Power Consumption deviation in the physical
model. The average deviation is 8.66%

be smoothed with a moving average filter. By analyzing
all datapoints gathered during the flights it becomes clear
that the power consumption is proportional to the speed and
altitude of the flight. One can also see that the climb and
descend phases of the flight only account for a small portion
of the energy consumption due to the energy consumption
on the different altitude only differs slightly. The energy
consumption on the slower flights is significantly higher than
on the faster flights, but including the findings of the motor
characterization, flying at even higher speeds than 12 m/s will
result in a higher energy consumption due to the efficiency
curve of the motors. One drawback on flying with higher
speeds is that the drone only reaches those speeds for a
small amount of time on the given flight path in the outdoor
testing facility. Figures 14 shows the results of the physical
energy model for a representative flight. A model accuracy of
80% was achieved. The average deviation using the physical
model was 13.87%.

IV. CONCLUSIONS

The goal of this paper was to design a model to predict
the energy consumption of an aerial drone. Flight tests were
carried out to collect data to regress the coefficients of
the proposed model and a accuracy of 80% was recorded.
Future work involves collecting more random test datasets
and comparing against blackbox approaches that use deep
recurrent neural networks (RNNs). The project will also
extend to included other types of aerial systems like VTOLs
and fixed wing aircrafts to provide a unified framework for
aerial vehicle energy estimations.


