
LORD USER MANUAL

G-Link®-200-OEM

Wireless Accelerometer Node

MicroStrain® Sensing Systems
459 Hurricane Lane
Williston, VT 05495
United States of America

Phone: 802-862-6629

www.microstrain.com sensing_support@LORD.com sensing_sales@LORD.com

Copyright © 2019 LORD Corporation

3DM®, 3DM-DH®, 3DM-DH3®, 3DM-GX2®, Ask Us How™, DEMOD-DC®, DVRT®, EmbedSense®, FAS-A®, G-Link®, Little Sensors, Big Ideas.®, LORD Microstrain®, Live Connect™, LXRS®, MathEngine®, MicroStrain®, MIP™, MXRS®, Node Commander®, SensorCloud™, SensorConnect™, SG-Link®, Strain Wizard®, TC-Link®, V-Link®, Wireless Simplicity, Hardwired Reliability™, and WSDA® are trademarks of LORD Corporation.

Document 8500-0092 Revision F

Subject to change without notice.

Contents

1.	Wireless Sens	or Network Overview	1
2.	Node Overview	v	2
	Figure 1.	G-Link-200-OEM	2
	2.1 Configuration	on Options	3
	Table 1.	G-Link-200-OEM Configuration Options	3
	2.2 Parts		4
	Table 2.	G-Link-200-OEM Parts	4
	2.3 Interface an	d Indicators	5
	Figure 2.	Interface and Indicators	5
	Table 3.	Indicator Behaviors	5
	2.4 Node Opera	ational Modes	5
	Figure 3.	Node Operational Modes	6
3.	System Opera	tion	7
	3.1 Software In	stallation	7
	3.2 Gateway Co	ommunication	8
	Figure 4.	USB Gateway Communication	8
	3.3 Connect to	Nodes	8
	3.3.1 Autom	natic Node Discovery on Same Frequency	8
	Figure 5.	Node Discovered On Same Frequency	8
	3.3.2 Autom	natic Node Discovery on Different Frequency	9
	Figure 6.	Node On Other Frequency	9
	Figure 7.	Move Node	9
	3.3.3 Manua	ally Add Node	9
	Figure 8.	Add Node By Address	9
	Figure 9.	Add Node Confirmation	10
	Figure 10	Failure to Add Node	10

4.	Wireless Sensor Configuration11
	4.1 Hardware Configuration11
	Figure 11. Node Configuration Menu11
	Table 4. Group Delay11
	Table 5. High Pass Filter Values12
	4.2 Calibration Configuration12
	Figure 12. Wireless Sensor Calibration Menu12
	4.3 Sampling Configuration13
	Figure 13. Sampling Configuration Menu13
	Table 6. Diagnostic Packet14
	4.4 Power15
	Figure 14. Node Configuration Power Menu15
5.	Wireless Sensor Sampling Configuration16
	5.1 Start Collecting Data16
	Figure 15. Single Node Sampling16
	Figure 16. Network of Nodes Sampling16
	5.2 Network Options
	5.3 Raw Waveform Channels
	Figure 17. Raw Data Output18
	5.4 Derived Output Channels
	Table 7. Derived Channel Variables19
	5.4.1 Windows
	Figure 18. Derived Data Window20
	5.4.2 Chunks20
	Figure 19. Derived Data Chunks20
	5.4.3 Under-sampling21
	5.4.4 Incoherence21
	5.5 Sampling Operations Options

	Figure 20. Sampling Operations Menu	21
	Figure 21. Event Triggered Sampling	22
	5.6 Output Operation	23
	Figure 22. Data Outputs	23
6.	Viewing Data	24
	6.1 Sensor Cloud	24
	6.1.1 Connect to SensorCloud	24
	Figure 23. SensorCloud Log-in or Register	24
	6.1.2 Navigating Menus	25
	Figure 24. SensorCloud Menu Views	25
	Figure 25. SensorCloud Data View	26
	Figure 26. MathEngine® View	27
	Figure 27. FFT Graph in SensorCloud	27
	6.2 SensorConnect	28
	6.2.1 Using Dashboards and Widgets	28
	Figure 28. Viewing Data	28
	6.2.2 Navigating Graphs	28
	Table 8. Graph View Controls	28
	6.2.3 Widgets Options	29
	Figure 29. Widget Settings Menu	29
	6.2.4 Time Series Widget Menu	29
	Figure 30. Time Series Widget Menu	29
	6.2.5 Exporting Data Files	30
	Figure 31. Exporting Data	30
7.	Installation	31
	7.1 Mounting Recommendations	31
	Figure 32. Mounting the Node	31
	Figure 33. Installing the Mounting Board	31

	7.2 Optimizing the Radio Link	32
	7.2.1 Range Test	33
	Figure 34. Range Test Menu	33
	Figure 35. Range Test Statistics	33
	7.3 Data Type	34
	Figure 36. Data Type Menu	34
8.	Troubleshooting	35
	8.1 Troubleshooting Guide	35
	8.2 Updating Node Firmware	38
	8.3 Repair and Calibration	38
	General Instructions	38
	Warranty Repairs	38
	Non-Warranty Repairs	38
9.	Specifications	39
	9.1 Physical Specifications	39
	9.2 Operating Specifications	40
	9.3 Mechanical Shock Limits	41
10.	Safety Information	42
	10.1 Disposal and Recycling	42
	10.2 Radio Specifications	42
11.	References	43
	11.1 Technical Support	43
	11.2 Sales Support	43
	11.3 Related Documents	44
	Table 9. Related Documents	44

1. Wireless Sensor Network Overview

The LORD Sensing Wireless Sensor Network is a high-speed, scalable, sensor data acquisition and sensor networking system. Each system consists of wireless sensor interface nodes, a data collection gateway, and full-featured user software platforms based on the LORD Sensing Lossless Extended Range Synchronized (LXRS) and data communications protocol. Bi-directional wireless communication between the node and gateway enables sensor data collection and configuration. Gateways can be connected locally to a host computer or remotely via local and mobile networks. Some gateways also feature analog outputs for porting sensor data directly to stand-alone data acquisition equipment.

The selection of available nodes allows interface with many types of sensors, including accelerometers, strain gauges, pressure transducers, load cells, torque and vibration sensors, magnetometers, 4 to 20mA sensors, thermocouples, RTD sensors, soil moisture and humidity sensors, inclinometers, and orientation and displacement sensors. Some nodes come with integrated sensing devices such as accelerometers. System sampling capabilities include lossless synchronized sampling, continuous and periodic burst sampling, and data logging. A single gateway can coordinate many nodes of any type, and multiple gateways can be managed from one computer with the SensorConnect and SensorCloud software platforms. Integration to customer systems can be accomplished using OEM versions of the sensor nodes and leveraging the LORD Sensing data communications protocol.

Common wireless applications of LORD Sensing Sensing Systems are strain sensor measurement, accelerometer platforms, vibration monitoring, energy monitoring, environmental monitoring, and temperature monitoring.

2. Node Overview

The G-Link-200-OEM wireless accelerometer node features an on- board triaxial accelerometer that allows high-resolution data acquisition at noise levels as low as 25 or 80 $\mu g \sqrt{Hz}$. The G-Link-200-OEM can output continuous waveform data, or one of four derived channels, including Velocity (IPSrms), Amplitude (Grms and Gpk-pk) and Crest Factor, allowing long-term monitoring of key performance indicators while maximizing battery life. To acquire sensor data, the G-Link-200-OEM is used with a LORD Sensing WSDA gateway, and comes with the following configuration options.

G-Link-200-OEM inputs are 20-bit resolution with \pm 0.1% full scale measurement accuracy. The node can log data to internal memory, transmit real-time synchronized data, and it supports event driven triggers with both pre-and post- event buffers.

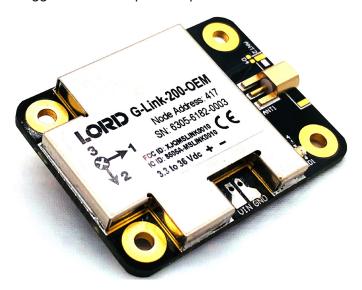
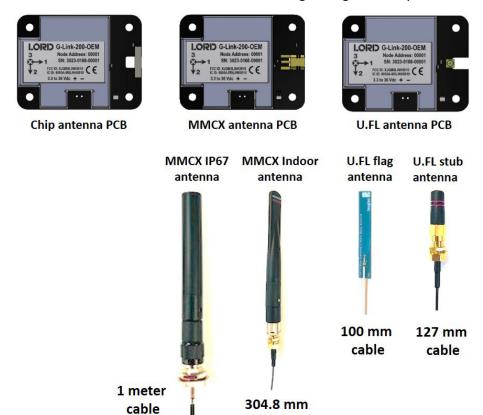



Figure 1. G-Link-200-OEM

2.1 Configuration Options

G-Link-200-OEM sensor node comes with the following configuration options.

Product	Model	Part Number
G-Link-200-OEM integrated chip antenna	8G 40G	6305-6002 6305-6003
G-Link-200-OEM, MMCX IP67 whip antenna	8G 40G	6305-6181 6305-6141
G-Link-200-OEM, U.FL stub antenna	8G 40G	6305-6182 6305-6142

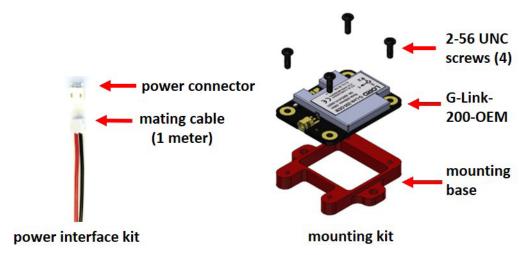

cable

Table 1. G-Link-200-OEM Configuration Options

2.2 Parts

The following parts are available for the G-Link-200-OEM

Part	Description	Part Number
Power Interface Kit	Power connector and mating cable (factory installation available at time of purchase)	6306-1030
Mounting Kit	Mounting base and 4 screws	6306-1031
MMCX indoor whip antenna	2.5 dBi antenna with 304.8 mm cable	6306-1032
U.FL Flag antenna	47 x 7 x 0.1 mm antenna with adhesive and 100 mm cable	6306-1033

Table 2. G-Link-200-OEM Parts

2.3 Interface and Indicators

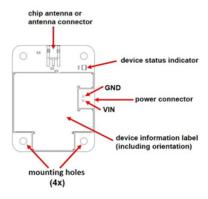


Figure 2. Interface and Indicators

Indicator	Behavior	Node Status
	OFF	Node is OFF
	Rapid green flashing on start-up	Node is booting up
Device status indicator	1 (slow) green pulse per second	Node is idle and waiting for a command
	1 green blink every 2 seconds	Node is sampling
	Blue LED during sampling	Node is resynchronizing
	Red LED	Built-in test error

Table 3. Indicator Behaviors

2.4 Node Operational Modes

Sensor nodes have three operational modes: active, sleep, and idle. When the node is sampling, it is in active mode. When sampling stops, the node is switched into idle mode, which is used for configuring node settings, and allows toggling between sampling and sleeping modes. The node will automatically go into the ultra low-power sleep mode after a user-determined period of inactivity. The node will not go into sleep mode while sampling.

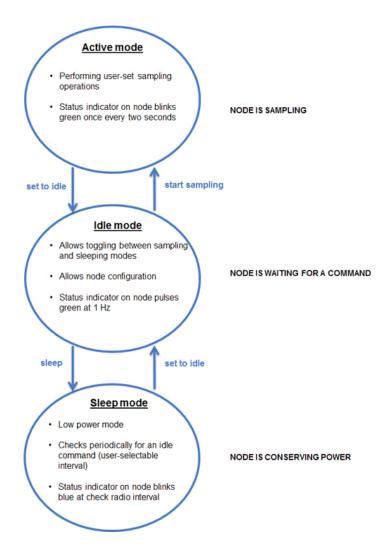


Figure 3. Node Operational Modes

3. System Operation

The gateway is the interface between LORD Sensing sensor nodes and the data acquisition computer. The gateway coordinates the configuration and sampling of the nodes and can handle many nodes simultaneously. Communication between the nodes and gateway is wireless and uses the LORD Sensing LXRS and LXRS+ data communications protocols.

LORD Sensing has two software programs available for data acquisition from the wireless sensor network: SensorCloud and SensorConnect. SensorCloud is an optional web-based data collection, visualization, analysis, and remote management platform based on cloud computing. SensorConnect is PC-based software used for configuring gateways and nodes, selecting sampling modes and parameters, initializing data acquisition, and viewing and saving data.

3.1 Software Installation

Install the SensorConnect software on the host computer before connecting any hardware. Access the free software download on the LORD Sensing website at:

http://www.microstrain.com/software

NOTE

The SensorConnect software includes hardware drivers required for use with USB gateways. Once installed, the software will automatically detect and configure any USB gateways that are plugged into the host computer.

SensorCloud is an optional data collection, visualization, analysis, and remote management tool. It is based on cloud computing technology and is accessed directly from a web connection. For more information go to:

http://www.sensorcloud.com/

3.2 Gateway Communication

Drivers for the USB gateways are included the SensorConnect software installation. With the software installed, the USB gateway will be detected automatically whenever the gateway is plugged in.

- 1. Power is applied to the gateway through the USB connection. Verify the gateway status indicator is illuminated, showing the gateway is connected and powered on.
- 2. Open the SensorConnect™ software.
- 3. The gateway should appear in the Controller window automatically with a communication port assignment. If the gateway is not automatically discovered, verify the port is active on the host computer, and then remove and re-insert the USB connector.

Figure 4. USB Gateway Communication

3.3 Connect to Nodes

Several methods can be used in SensorConnect to establish communication with the nodes: the automatic node discovery on the same frequency, automatic node discovery on a different frequency, and add node manually.

3.3.1 Automatic Node Discovery on Same Frequency

If the base and node are on the same operating frequency, the node will populate below the Base Station listing when powering on the G-Link-200-OEM.

Figure 5. Node Discovered On Same Frequency

3.3.2 Automatic Node Discovery on Different Frequency

If a red circle with a number appears next to the Base Station, the node is operating on a separate radio channel. Select the Base Station and then select the Nodes on Other Frequencies tile.

Figure 6. Node On Other Frequency

Highlight the new node being added and select Move Node to Frequency (#).

Figure 7. Move Node

3.3.3 Manually Add Node

Adding a node manually requires entering the node address and its current frequency setting.

From the Base Station, select the Manual Add Node tile, enter the Node Address, last known Frequency (factory default is 15), and select Add Node.

Figure 8. Add Node By Address

If the node was successfully added, two confirmation messages will appear and it will be listed under the Base Station.

Figure 9. Add Node Confirmation

If the node failed to be added, a failure message will appear. This means the node did not respond to the base station which could indicate the node is not in idle mode or it may be on another frequency. If "Add Node Anyway" is selected, it will associate that node with the channel entered but it is likely there will be a communication error. If the node was not in idle, move the base station to the frequency of the node and issue a "Set to Idle" command.

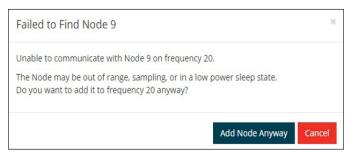


Figure 10. Failure to Add Node

4. Wireless Sensor Configuration

4.1 Hardware Configuration

Node settings are stored to non-volatile memory and may be configured using SensorConnect. This chapter describes the user-configurable settings.

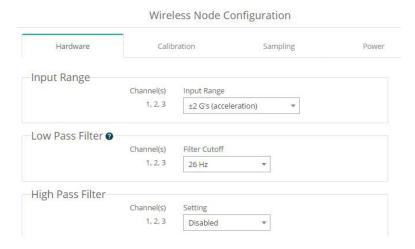


Figure 11. Node Configuration Menu

Input Range - Set the accelerometer range to fit the application. Available ranges are ± 2.048 g, ± 4.096 g, and ± 8.192 g for the 8g node or ± 10.24 g, ± 20.48 g, and ± 40.96 g for the 40g node

Low Pass Filter and Group Delay - The accelerometer provides two filter stages for limiting bandwidth and maintaining excellent noise performance. The first stage is an analog, fixed frequency, anti-aliasing filter with -3 dB attenuation at 800 Hz, and 6.18 dB attenuation at 1500 Hz. The second is a user adjustable digital decimation filter. The decimation filter allows low-pass filtering between 26 Hz to 800 Hz on each channel independently. To minimize aliasing, it is recommended to set the low pass filter to a frequency ½ that of the sample rate or less.

Group Delay - The time delay of the signal amplitude imparted by the low pass filter. See Talbe 4 for group delay values corresponding to the low pass filter configuration.

Low Pass Filter (Hz) at -3 dB	Group Delay (ms)
800	0.88
418	1.51
209	2.75
104	5.27
52	10.31
26	20.38

Table 4. Group Delay

High Pass Filter - The accelerometer contains an optional high-pass filter which is disabled by default. The high-pass filter corner frequency is effected by the low pass filter setting. When enabled, the high pass filter -3 dB point will be equal to the corresponding low pass filter value as shown in Table 5 below.

Low Pass Filter (Hz)	Resulting High Pass Filter
(Hz)	
800	2.48
418	1.24
209	2.48
104	1.24
52	0.62
26	0.31

Table 5. High Pass Filter Values

4.2 Calibration Configuration

Each node is calibrated at the factory and stores its linear calibration coefficients in nonvolatile memory. These coefficients are applied by the node when the node is outputting data in "floating point" format. The coefficients are applied automatically by SensorConnect when the node is outputting data in signed 16- bit or signed 24- bit formats. For the available data types, the calibration coefficients are applied as follows:

Float (4 Bytes): Calibration applied by node

Int24 (3 Bytes): G-force = value * slope + offset

Int16 (2 Bytes): G-force = 64 * value * slope + offset

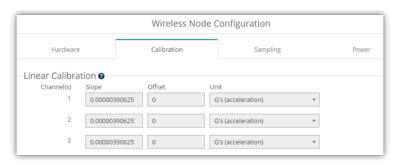


Figure 12. Wireless Sensor Calibration Menu

4.3 Sampling Configuration

There are three user-set sampling options for the G-Link-200-OEM, including Lost Beacon Timeout, Diagnostic Info Interval, and Storage Limit Mode, in the Wireless Node Configuration > Sampling menu.

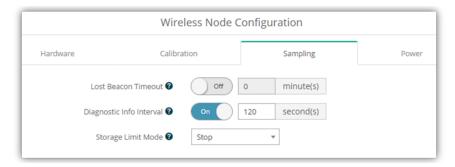


Figure 13. Sampling Configuration Menu

Lost Beacon Timeout - When the node is running in a synchronized network, it periodically synchronizes its time clock to a beacon broadcasted from the WSDA gateway. The Lost Beacon Timeout feature means that the node will automatically stop sampling and transmitting data after the beacon has been lost for the configured amount of time. The node will save power in this state without user intervention until the beacon returns. Within two minutes of the beacon returning, the node will automatically begin sampling and transmitting data again.

Diagnostic Info Interval - At the defined transmit interval, the wireless sensor will report diagnostic information. The node will continue to transmit this diagnostic information in all operating modes, including Idle, Sleep, and Run modes.

Storage Limit Mode - The Storage Limit Mode applies when the node is datalogging to internal flash. The two available options are: 1) **Stop** - when the node fills up its flash memory, it will stop logging data. It is important to erase old data before starting new data logging sessions, and 2) **Overwrite** - when the node fills up its flash memory, new data will overwrite old data in a first-in, first-out method.

The contents of the diagnostic packet may be viewed in the Data tab within SensorConnect.

Description	Data Values	Data Type	Unit	
Current State	0 = Idle 1 = Deep sleep 2 = Active run 3 = Inactive run	unit 8		
	Idle	unit 32	seconds	
Run Time	Deep sleep	unit 32	seconds	
Null Time	Active run	unit 32	seconds	
	Inactive run	unit 32	seconds	
Reset Counter		unit 16	counts	
Built in Test Result	0 = no errors	unit 32		
Internal Temperature	Valid range: -40 to 125° C	unit 8	Celsius	
Low Battery Indicator	0 = good 1 = low 2 = critical (sensor will stop sampling)	unit 8		
External Power	0 = not connected 1 = external power connected	unit 8		
O a manufacturate	Sweep index	unit32	counts	
Sample Info	Bad sweep count	umoz	Courits	
	Total transmissions	unit32	counts	
Transmission Info	Total retransmissions			
	Total dropped packets			
	Synchronization attempts	:100		
Synchronization Info	Synchronization failures	unit32	counts	
	Seconds since last synchronization	unit32	counts	
Event Trigger Index		unit16	counts	

Table 6. Diagnostic Packet

4.4 Power

There are multiple user-set power options for the G-Link-200-OEM, including Default Operation Mode, User Inactivity Timeout, Check Radio Interval, and Transmit Power, in the Wireless Node Configuration > Power menu.

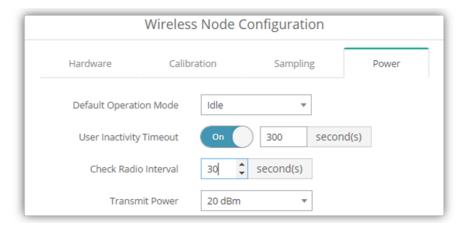


Figure 14. Node Configuration Power Menu

Default Operation Mode - When power is applied, the node will enter the Default Operation Mode.

User Inactivity Timeout - While in Idle mode, the node will automatically enter Sleep mode if it does not receive any commands for the selected amount of time. If Sample is selected under Default Operation Mode, the node will automatically re-enter the sample mode it performed last with all current settings. Disable User Inactivity Timeout to avoid the node automatically changing states.

Check Radio Interval - While in Sleep and Sample modes, the Check Radio Interval sets the frequency the node checks the radio channel for a "Set to Idle" command. Decreasing the Check Radio Interval will shorten the amount of time it takes to wake the node into Idle mode with the cost of decreasing battery life. Increasing the Check Radio Interval could increase battery life at the cost of increasing the amount of time it takes to wake the node into its Idle mode.

Transmit Power - Set the output power of the radio to a value between 0dBm to +20dBm.

The output power will effect communication range and also battery life.

5. Wireless Sensor Sampling Configuration

5.1 Start Collecting Data

There are several ways to collect data from the G- Link- 200- OEM, including from a single node, a network of nodes, or restarting the last used sampling mode, by pressing and holding the start button until the LED light turns blue.

Single node - From Devices, select Node > Sampling > Apply and Start Network to begin collecting data from a single wireless sensor.

Figure 15. Single Node Sampling

Network of Nodes - From Devices, select > Base Station > Sampling Network > Nodes to be sampled > Apply and Start Network to start collecting data from a network of wireless sensors.

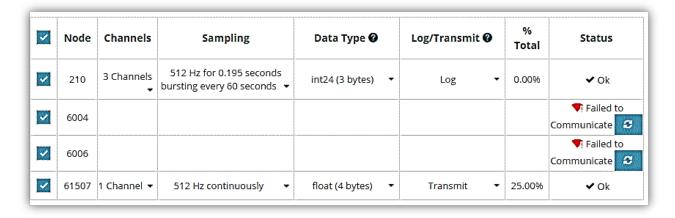


Figure 16. Network of Nodes Sampling

5.2 Network Options

There are two network settings available for the G-Link-200-OEM: LXRS and LXRS+. These feature node-to-node synchronization of 50us, and unmatched lossless wireless sensor network data throughput. MicroStrain Sensing created these specifically for applications such as flight test and heavy machinery monitoring, where large amounts of raw data are generated, and node synchronization is important. The principal difference between the two protocols is that LXRS+ sacrifices communications range, in favor of a 4x greater network bandwidth.

- **LXRS** prioritizes communication range over network throughput and is designed to work at ranges up to 2km with network throughput of up to 4k samples per second.
- LXRS+ prioritizes network throughput over range, and is designed to work at ranges up to 400m with network throughput of up to 16k samples per second.
- NOTE: Base stations and nodes must use the same protocol in order to communicate with one another.

Synchronized - All nodes in the network will periodically synchronize their time clocks to a beacon that is broadcast each second by the **WSDA** gateway. Each beacon contains a UTC timestamp, allowing nodes to align their collected data within an accuracy of +/- 50 us. Each node will also buffer data and transmit this data in time slots allocated prior to sampling. Using time slots assures the transmissions will not "collide" or corrupt each other. It also provides a means for efficiently scaling the size of the network to allow as much data throughput as possible.

Synchronized Enabled

- Requires a beacon from a WSDA gateway for synchronization
- Nodes use beacon to timestamp their data within an accuracy of +/- 50us
- TDMA transmission scheme allows for large, reliable networks
- Data is buffered

Synchronized Disabled

- Low Latency (no data buffering)
- Does not require a WSDA gateway beacon
- Data is timestamped when received by the PC (less accurate)
- No synchronization between nodes
- Higher chance of packet loss

Lossless The user can achieve near lossless data collection in most environments using data buffering, radio acknowledgments, and retransmissions. Each node buffers collected data and timestamps to an internal 2 Mbit FIFO buffer. For each transmission, data is pulled from this buffer. The node will retransmit data until this acknowledgment is received. Inherent overhead in the transmission scheduling protocol assures the node time to recover from periods of poor

radio communication. This feature allows lossless performance in environments where the node suffers as much as 50% packet error rate. It also allows for operation in situations where the gateway and node move in and out of range of each other

Lossless Enabled

- · Nodes will retransmit data until acknowledged by the WSDA gateway
- Lossless performance in environments where packet error rate is as much as 50%
- Allows for operation in situations where the node and gateway move in and out of range with each other
- · Potential for higher latency

Lossless Disabled

- · No retransmissions will occur
- Useful when your application requires consistent latency or can tolerate lost data.

5.3 Raw Waveform Channels

There are two options for data output from the G-Link-200-OEM, including raw waveform channels and derived data channels. The raw channels provide waveform data directly from the sensor.

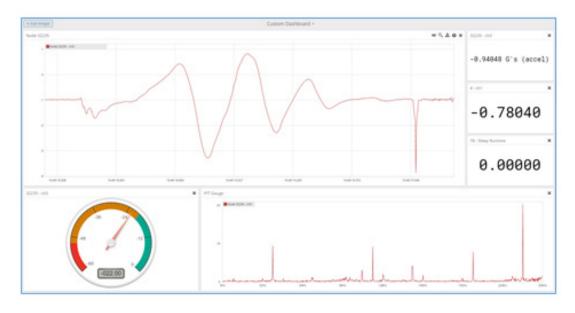


Figure 17. Raw Data Output

5.4 Derived Output Channels

There are four derived data channels available for the G-Link-200. Using these data channels for vibration analysis allows the ability to extend battery life while reducing data. Each operation is performed on a window of data from the specified accelerometer axis. The timestamp associated with each sweep is that of the last data point collected within that window. The derived data output rate must be at least 32 times slower than the sample rate.

RMS is calculated by accumulating the mean squared of each chunk, dividing by the number
of chunks in the window, and taking the square root.

$$RMS(F) = \sqrt{\sum_{j=0}^{J-1} \frac{\sum_{n=0}^{N-1} F_j(n)^2}{K}}$$

 Crest Factor is calculated by taking the absolute maximum value from the window and dividing by the RMS of the window.

$$CrestFactor(F) = \max(|\max(F_0, \dots, F_{J-1})|, |\min(F_0, \dots, F_{J-1})|) / RMS(F)$$

 Peak to Peak is calculated by subtracting the smallest value from the window from the largest value.

$$PeakToPeak(F) = \max(F_0, \dots, F_{J-1}) - \min(F_0, \dots, F_{J-1})$$

• Velocity - IPS or m/s

$$IPS_{RMS}(F) = \sqrt{\sum_{j=0}^{J-1} \frac{\sum_{n=0}^{N-1} (\int CSI(F_j)(n))^2}{K}} \cdot 386.2197$$

The RMS of the IPS is calculated by determining a cubic spline of a chunk, analytically integrating the cubic spline, taking the RMS of the cubic spline integral, and multiplying by 386.2197 to convert from Gs to in/sec².

Name	Description
F	Window of sampled data
Fj	Chunk of sampled data
J	Number of chunks in the window
К	Number of samples in the window
N	Number of samples in the chunk

Table 7. Derived Channel Variables

5.4.1 Windows

When performing a derived calculation on sampled data a window is used to provide a rate to transmit derived calculations and a range of time to derive from. The length of a window in time is a single period of the derived rate and is given the timestamp of the first sample of the next window.

Given a sample with a timestamp of t and a derived period of p, the timestamp of the derived window it belongs to is defined below.

Burst Mode - when the node is bursting, the window covers the entire burst instead of the derived rate. Given a sample with a timestamp of t, a burst period of p, and a burst duration of t, the timestamp of the derived window it belongs to is defined below.



Figure 18. Derived Data Window

NOTE

A window must contain at least 32 samples. For continuous this means that the derived period must be at least 32 times as long as the sample period. Burst is not limited by this restriction because the minimum burst size is 100 samples.

5.4.2 Chunks

Windows can encompass thousands of samples, but a node can only operate on a finite number of samples at a time, so the node chunks up data to run derived calculations. Chunk size is defined below where **p** is the derived period, **d** is the burst duration, and is the maximum chunk size. Maximum chunk size can change between nodes depending on how many resources are available for derived calculations. The G-Link-200-OEM has a max chunk size of 256 samples.

Continuous - Schunk = min(p, Smax)

Burst - Schunk = min(d, Smax)

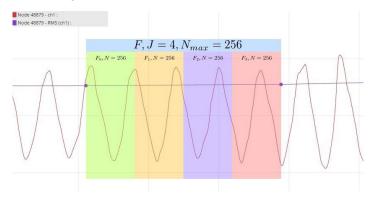


Figure 19. Derived Data Chunks

5.4.3 Under-sampling

Under-sampling happens when there are not enough samples to accurately calculate a value for a derived channel. The user should pick a window size that contains at least two periods of the lowest rate input signal to be measured. The more information that can be included in the derived calculation the more accurate the calculation.

For derived channels that use Fourier transforms on raw data, such as IPS, the chunk size will limit the input frequency range rather than the window size. If the chunk size is at its maximum size the only way to gain accuracy for lower frequencies is to reduce the sample rate.

5.4.4 Incoherence

Derived channels are most accurate when the window time is a multiple of the period of the input signal, meaning that the window is coherent with the input signal. When the window is not coherent with the input signal, the window will end up with a fraction of a period of the input signal at the end, which will skew the derived calculation for the window in some cases. Inaccurate derived values due to incoherence can be mitigated by using a larger window size. The more input signal periods sampled within a window the more accurate the calculation.

5.5 Sampling Operations Options

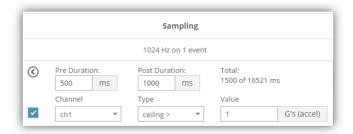

There are four sampling operations options for the G-Link-200-OEM, including Continuous, Limited, Periodic Burst, and Event Triggered.

Figure 20. Sampling Operations Menu

- **Continuous** Collect data continuously at the configured sample rate. All data is transmitted and/or logged to flash memory until a Set to Idle command is received.
- **Limited** Automatically stop sampling and return to Idle mode after the configured time duration is met.
- Periodic Burst Perform short sampling bursts at periodic intervals. This operation allows longer battery life and increased network sizes in applications where continuous monitoring is not required.
- Event Triggered Collect data continuously at a fixed sample rate. However, only transmit or log data if one of the configured threshold conditions has been met. When the condition is met, all active sensor channels transmit and/or log both pre- and post-event data. Benefits of this operation include increased battery life, reduced data sets, and increased network size.

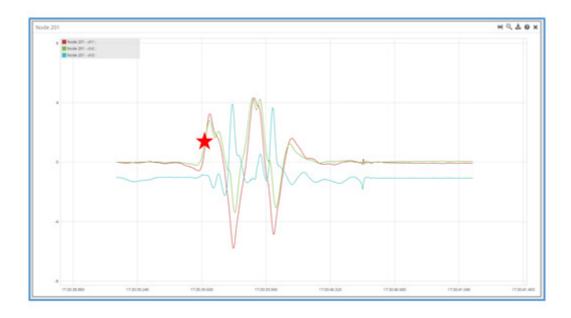


Figure 21. Event Triggered Sampling

5.6 Output Operation

There are three options for managing data acquired from the G-Link-200-OEM. The user can transmit collected data, log the data to flash memory, or do both.

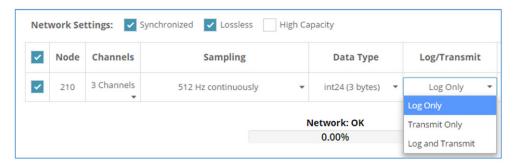


Figure 22. Data Outputs

6. Viewing Data

6.1 Sensor Cloud

SensorCloud is based on cloud computing technology and is designed for long term collecting and preservation of data. Features include time series and visualization graphing, automated alerts, and data interpretation tools such as data filtering, statistical analysis, and advanced algorithm development with the integrated MathEngine® interface. Leveraging the open source API, SensorCloud can also be used to collect data from other LORD Sensing sensor products or third-party systems. Basic SensorCloud services are available to all users free of charge at: http://www.sensorcloud.com/.

6.1.1 Connect to SensorCloud

Go to the SensorCloud website and select sign-in to enter the log-in credentials, or register as a new user if needed.

Figure 23. SensorCloud Log-in or Register

6.1.2 Navigating Menus

The SensorCloud interface has six main views. When logging in as a registered user, the Device view is the default. Navigate to other views by clicking the view name at the top of the page. The Data and Settings views are only available once a device is selected from the device list.

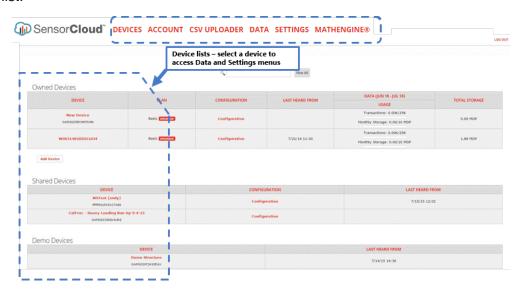


Figure 24. SensorCloud Menu Views

Device - The device list shows every Ethernet gateway and API device associated with the SensorCloud account, including owned, shared, and demo devices. This view provides links to each device's SensorCloud subscription plan, configuration options, and a summary of last communications and data transactions.

Account - The account view is for logistic management of the SensorCloud account, such as changing the log-in password, accessing user email, and reviewing billing information.

CSV Uploader - The data upload feature enables data from any source (such as non-Ethernet LORD Sensing gateways, or third-party sensor) to be uploaded to the SensorCloud platform. The data must be in the LORD Sensing CSV format.

Data - This view is only available after a device is selected. It displays data that is collected from sensor nodes or uploaded from files. Data selections are listed by node channel or a user-defined label and can be enabled for display in the graph window. The interactive graph has navigational features such as panning, zooming, and an overview graph for single-click access to data points or ranges. There are also use and management features such as viewing the meta-data and downloading, embedding, and tagging data graphs.

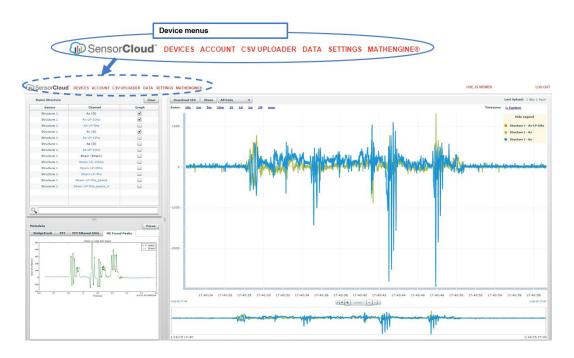


Figure 25. SensorCloud Data View

Settings - The settings view provides options for adding meta-data, configuring the data displays for each channel, creating alerts based on data thresholds, setting the data time zone, and more.

MathEngine® - is used to analyze sensor data. Functions include the ability to filter out frequencies, smooth out noisy data, perform math operations such as Fast Fourier Transforms (FFTs), and more. MathEngine® interfaces with the SensorCloud graphing view for faster processing. Users can write their own algorithms for custom applications. Refer to the MathEngine® website for more information.

http://sensorcloud.com/mathengine

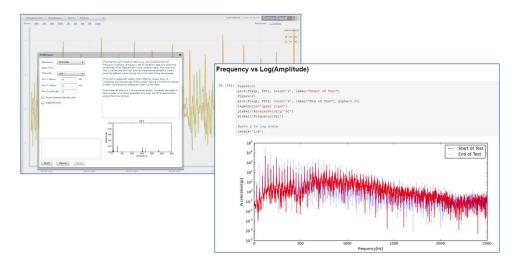


Figure 26. MathEngine® View

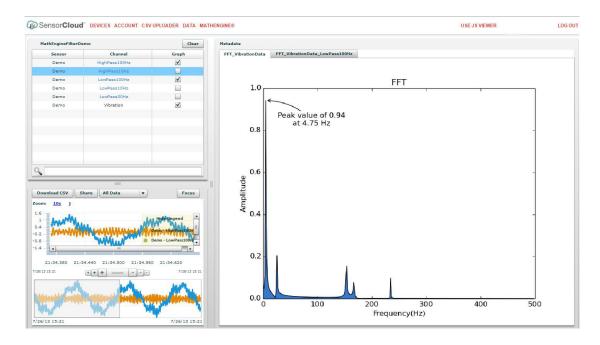


Figure 27. FFT Graph in SensorCloud

For more information about SensorCloud features and navigation, refer to the SensorCloud website or contact LORD Sensing Support.

6.2 SensorConnect

6.2.1 Using Dashboards and Widgets

Collected data is viewed on the Data page through the creation of dashboards and widgets. Think of dashboards as individual pages and widgets as an illustration on the page. Create multiple data widgets on each dashboard to display sampled data as a time-series graph, text chart, or a simple gauge that only displays the most current reading. This format provides an easy way to organize many sensors and networks, and it allows the information to be displayed in the most appropriate layout.

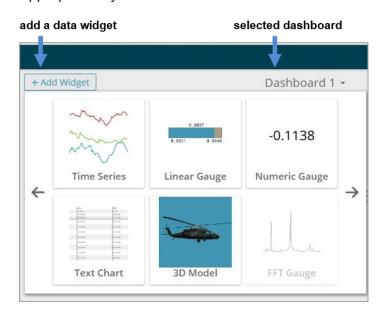


Figure 28. Viewing Data

6.2.2 Navigating Graphs

Use the mouse along with the shift and control keys inside the graph window to adjust the data view.

Control	Action
Mouse wheel	Zoom in/out on x-axis
Shift + mouse wheel	Zoom in/out on y-axis
Mouse double-click	Zoom to extends
Shift + mouse left-click, drag left/right	Zoom window left/right
Shift + mouse left-click, drag up/down	Zoom window up/down
Ctrl + mouse left-click, drag	Zoom box

Table 8. Graph View Controls

6.2.3 Widgets Options

The widget configuration menu is different for each type of widget but typically includes sensor or channel selections and widget settings such as titles and legends.

After adding a widget, left click to select and configure it in the Channels and Settings left sidebar menu. Under Channels, the channel(s) for the widget can be enabled and disabled.

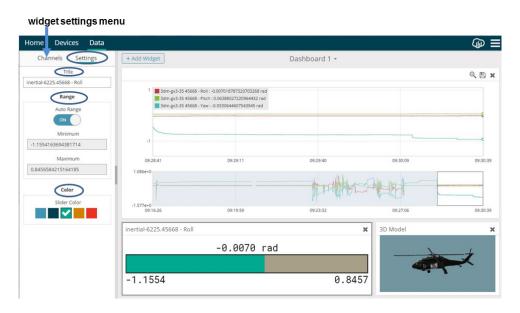


Figure 29. Widget Settings Menu

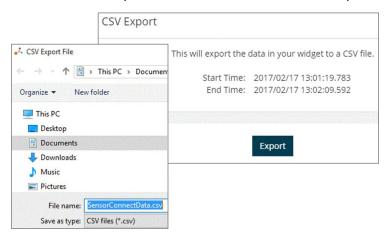
6.2.4 Time Series Widget Menu

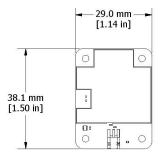
The Time Series Widget menu has two features to help optimize sensor data collection for export to a .csv file. Snap to Latest captures the most recent data and Zoom isolates specific events from a larger data sample.

Figure 30. Time Series Widget Menu

6.2.5 Exporting Data Files

To export data to a .csv file, select the Export Data button on the Time Series widget > Export > name the document > save to the preferred location on the host computer.




Figure 31. Exporting Data

7. Installation

7.1 Mounting Recommendations

The G-Link-200-OEM is rated for indoor use only, unless housed in a ruggedized outdoor enclosure. There are 4 mounting holes on the G-Link-200-OEM for 2-56 UNC screws. The node can be mounted in any orientation, but it is recommended that it is mounted in a way that optimizes wireless communications. For more information see 8.2 Optimizing the Radio Link.

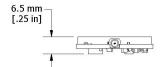


Figure 32. Mounting the Node

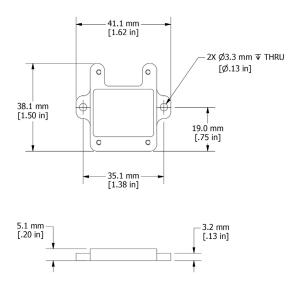


Figure 33. Installing the Mounting Board

7.2 Optimizing the Radio Link

NOTE

In the event of communication difficulties, it may be necessary to disable WIFI on the host computer, or use a USB extender when collecting data.

The best method for ensuring optimal radio communication is to conduct an RF survey of the installation site. This is easily accomplished in SensorConnect by using the range test feature to quantify the radio signal strength (RSSI) in various scenarios. See **Range Test** for instructions on using SensorConnect for measuring RSSI. The following are general guidelines for maximizing communication range:

- **Line of Sight (LOS)** between the node and gateway. Try to avoid obstructions such as buildings, terrain, vegetation, or other physical barriers.
- Increase the Mounting Height of the node to allow a clearer LOS path to the gateway. Height above the ground is also important because reflections off of the ground can interfere at the receiver. Generally, the higher above the ground the better.
- Minimize Radio Frequency Interference (RFI) from other wireless devices, especially
 those operating in the same frequency range. This includes other nodes and 2.4 GHz
 WIFI routers. If other wireless devices are required nearby, mount them at different heights
 to minimize interference. Additionally, a different radio frequency may be selected using
 SensorConnect software.
- Minimize Electromagnetic Interference (EMI) such as that which is generated by power transmission equipment, microwaves, power supplies, and other electromagnetic sources.
- **Metal Objects** in close proximity to either antenna, particularly ferrous metals such as steel and iron, can be problematic for wireless communications. The larger the object, the greater the influence.

7.2.1 Range Test

After establishing communication between node and gateway, use the range test feature in SensorConnect to monitor the signal strength and to optimally position the nodes, gateway, and antennae for installation. Maximum achievable range is determined by the gateway and node power settings (found in the device Configure menu) and is highly dependent on the physical environment surrounding the devices.

1. Select the node name > Range Test

Figure 34. Range Test Menu

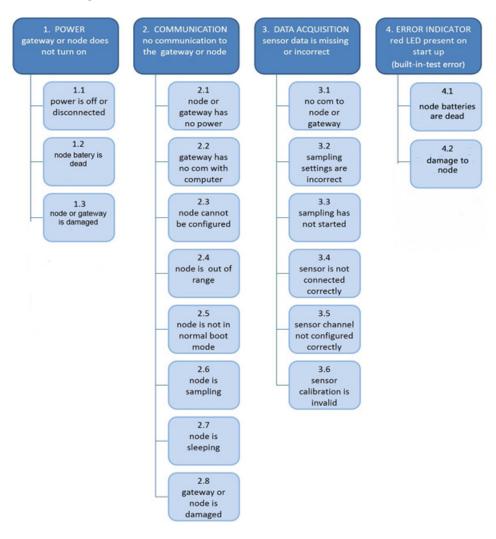
2. RSSI is a measure of signal strength between the node and the base station. A higher RSSI value (closer to zero), will result in better node to base station communication. Reliable communication can be achieved with a signal strength greater than -75 dBm, in the absence of radio frequency interference. Position the node and gateway antennas where the best RSSI value is observed.



Figure 35. Range Test Statistics

7.3 Data Type

There is a 20-bit ADC on the G-Link-200-OEM. However, users may select the data type that is reported. Floating point should be selected in most applications and where nodes must send measurements in units of g-force. Int16 or Int24 may be selected for applications requiring maximum network bandwidth or longer battery life.


Figure 36. Data Type Menu

- Float (4 Bytes) The node applies calibration coefficients locally and reports measurements as floating point values.
- Int24 (3 Bytes) The node sends its 20-bit measurements as signed 24-bit values. Data
 collection software such as SensorConnect must apply the calibration coefficients using the
 following equation: G-force = value * slope + offset
- Int16 (2 Bytes) The node sends its 20-bit measurements as signed 16-bit values. Data
 collection software such as SensorConnect must apply the calibration coefficients using the
 following equation: G-force = value * 64 * slope + offset

8. Troubleshooting

8.1 Troubleshooting Guide

	Possible cause and recommended solution
1. POWER Gateway or node does not turn on	 1.1 node or gateway power is off The status indicator LED on the device may be off. Turn the device on, and the status indicator LED should illuminate. 1.2 node battery is dead
	If the node will not power on, the node battery may need to be replaced.
	1.3 node or gateway is damaged If all power settings and connections have been verified, and the node is still unresponsive, contact LORD Sensing Technical Support.
2. COMMUNICATION No communication to the gateway or node	2.1 node or gateway has no power Verify the node and gateway have power applied and that applicable power switches are on. Power is indicated on both devices by a status indicator LED.
	2.2 gateway has no communication with the computer Verify gateway communication in the software. Check, remove, and reconnect communications and power cables as applicable.
	2.3 node cannot be configured Observe the node status indicator LED to determine the device's state: boot, idle, sample, or sleep. If the node is sampling or sleeping, it cannot be configured. In , execute the Set to Idle command to put the node in idle state, allowing configuration to occur. If the user inactivity timeout is set very low, the configuration menu will have to be entered quickly, before the timeout occurs, putting the node back in a sample or sleep state.
	2.4 node is out of range Perform a bench test with the node in close proximity to the gateway to verify they are operational. For range test and installation recommendations The system has been tested to operate with the node and gateway up to 2 km apart with clear line of sight.
	2.5 node is not in normal boot mode If the node status indicator shows the node booting in a mode other than the normal boot mode, it can be bypassed by cycling the node power rapidly three times, then leaving it on for normal power up. In normal boot mode the communication can be established with automatic node discovery (or manually) once the boot process is complete and the node is in idle state. Startup mode can then be changed in the software.
	2.6 node is sampling Observe the node status indicator LED to determine the device's state: boot, idle, active, or sleep. If the node is sampling, it cannot be configured. In , execute the Set to Idle command to put the node in idle state, allowing configuration to occur.
	2.7 node is sleeping Observe the node status indicator LED to determine what state it is: boot, idle, active, or sleep. If the node is sleeping, it cannot be configured. In , execute the Set to Idle command to put the node in idle state, allowing configuration to occur.
	2.8 gateway or node is damaged Verify all connections, power, and settings. If available, try installing alternate nodes and gateways one at a time to see if the faulty device can be identified. If no conclusion can be determined or to send a device in for repair, contact LORD Sensing Technical Support.

	Possible cause and recommended solution
3. DATA ACQUISITION Sensor data is missing or incorrect	3.1 no communication to node or gateway Verify connections and power to the node and gateway. Verify they are powered on and communicating with the software. Enter a configuration menu to verify that the node can be accessed.
	3.2 sampling settings are incorrect If the sampling mode, rate, or duration are not performing as expected, enter the node configuration menu, and verify the sampling settings.
	3.3 sampling has not started If sampling is occurring, the sampling mode will be displayed next to the node name in . The node device status indicator will also be flashing the sampling mode code. If the node is not sampling, activate it in the software or with a sample on start up boot sequence.
	3.4 sensor is not connected correctly Verify sensors connections and wiring.
	3.5 sensor channel not configured correctly Verify that the sensor is configured on the correct channel and has been enabled for data acquisition.
	3.6 sensor calibration is invalid Internal sensors are factory calibrated and should not need adjustment. The calibration data is provided with the sensor when purchased.
4. ERROR INDICATOR Red LED present on start up	4.1 node batteries are dead Remove the batteries for more than 10 seconds, and re-insert, if Red LED persists, replace with 3 new batteries.
	4.2 damage to the node If Red LED persists after replacing the batteries, there is damage to the node. Contact LORD Sensing Technical Support for assistance.

8.2 Updating Node Firmware

Under the recommendation of LORD Sensing Technical Support Engineers, nodes can be upgraded to the latest available firmware to take advantage of new features or correct operating settings. SensorConnect version 5.0.0 or greater can be used to update any LXRS node or gateway firmware to the most current version. Updates are found on the LORD Sensing website.

- 1. Download the Firmware Upgrade file from the LORD Sensing website.
- 2. Once downloaded, extract the contents of the .zip file into a folder on the computer. Verify there is a file with a .zhex extension.
- 3. Launch SensorConnect and establish communication between the node and gateway as normal.
- 4. Select the Node address > Upgrade Firmware > select Browse > select the Firmware Upgrade file > Start Upgrade.

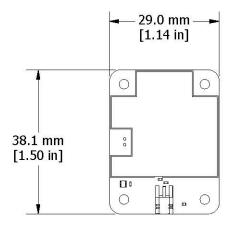
8.3 Repair and Calibration

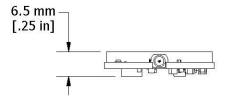
General Instructions

In order to return any LORD Sensing product, you must contact LORD Sensing Sales or Technical Support to obtain a Return Merchandise Authorization number (RMA). All returned merchandise must be in the original packaging including manuals, accessories, cables, etc. with the RMA number clearly printed on the outside of the package. Removable batteries should be removed and packaged in separate protective wrapping. Please provide the LORD Sensing model number and serial number as well as your name, organization, shipping address, telephone number, and email. Normal turn- around for RMA items is seven days from receipt of item by LORD Sensing.

Warranty Repairs

LORD Sensing warrants its products to be free from defective material and workmanship for a period of one (1) year from the original date of purchase. LORD Sensing will repair or replace, at its discretion, a defective product if returned to LORD Sensing within the warranty period. This warranty does not extend to any LORD Sensing products which have been subject to misuse, alteration, neglect, accident, incorrect wiring, mis- programming, or use in violation of operating instructions furnished by us. It also does not extend to any units altered or repaired for warranty defect by anyone other than LORD Sensing.


Non-Warranty Repairs


All non- warranty repairs/replacements include a minimum charge. If the repair/replacement charge exceeds the minimum, LORD Sensing will contact the customer for approval to proceed beyond the minimum with the repair/replacement.

9. Specifications

9.1 Physical Specifications

Dimensions 38.1 mm x 6.5 mm x 29 mm

Mounting 4 x 2-56 UNC

Weight 8.17 grams

Conformal Coating Humiseal 1B31

9.2 Operating Specifications

Specifications

Analog Input Channels					
	8 g	40 g			
Measurement range	$\pm 2 g$, $\pm 4 g$, or $\pm 8 g$ configurable	$\pm 10 \ g$, $\pm 20 \ g$, or $\pm 40 \ g$ configurable			
Noise density	25 μ <i>g</i> /√ Hz	80 μ <i>g</i> /√ Hz			
0 g offset	±25 mg (±2 <i>g</i>)	±50 mg (±10 <i>g</i>)			
0 g offset vs temperature	±.1 mg/ °C (typical) ±.15 mg/ °C (max)	±0.5 mg/ °C (typical) ±0.75 mg/ °C (max)			
Integrated Sensors	Triaxial MEMS accelerometer, 3 channels				
Accelerometer bandwidth	DC to 1 kHz				
Resolution	20 bit				
Scale factor error	< 1%				
Cross axis sensitivity	1% typical				
Sensitivity change (temperature)	±0.01%/°C typical				
Anti-aliasing filter	1.5 kHz (-6 dB attenuation)				
Low-pass digital filter	26 to 800 Hz - configurable				
High-pass digital filter	Off to 2.5 Hz - configurable				
Integrated Temperature Channel	Integrated Temperature Channel				
Measurement range	- 40°C to 85°C				
Accuracy	±0.25°C (over full range)				
Sampling					
Sampling modes	Continuous, periodic burst, event triggered				
Output options	Acceleration, Tilt, and Derived channels: Velocity (IPSrms), Amplitude (Grms and Gpk-pk) and Crest Factor				
Sampling rates	1 Sample/hour to 4096 Hz.				
Sample rate stability	±5 ppm				
Network capacity	Up to 128 nodes per RF channel (bandwidth calculator) http://www.microstrain.com/configure-your-system				
Node synchronization	±50 μsec				
Data storage capacity	16 M Bytes (up to 8,000,000 data points)				
Operating Parameters					
Wireless communication range	Outdoor/line-of-sight: 2 km (ideal)*, 800 m (typical)** Onboard antenna: 1 km (ideal)*, 400 (typical)** Indoor/obstructions: 50 m (typical)**				
Antenna	Surface mount or External through MMCX or U.FL connector				
Radio frequency (RF) transceiver carrier	License-free 2.405 to 2.480 GHz with 16 channels				

RF transmit power	User-adjustable 0 dBm to 20 dBm. Restricted regionally			
Power source	3.3 V dc to 36 V dc to solder pads			
	Tx Power	VIN = 3.6 V	VIN = 5.0 V	VIN = 12 V
Pulse Current***	+20 dBm	135 mA	100 mA	45 mA
	+16 dBm or less	100 mA	70 mA	32 mA
ESD	±4000 V (Applies to VIN, GND, Antenna, and shield)			
Operating temperature	-40°C to +85°C			
Mechanical Shock Limit	1000 <i>g</i> /1.5ms +			
Physical Specifications				
Dimensions	1.5 "x 1.14 "x .254" (38.1 x 29.0 x 6.5 mm)			
Mounting	(4) 2- 56 UNC Chassis purchased separately			
Weight	8.17 grams			
Conformal coating	Humiseal 1B31			
Integration				
Compatible gateways	All WSDA gateways			
Software	SensorCloud, SensorConnect, Windows 7, 8 & 10 compatible			
Software development kit	http://www.microstrain.com/software/mscl			
Regulatory compliance	FCC (USA), IC (Canada), CE, RoHS (EU), MIC (Japan)			

- * Actual range varies with conditions
- ** Measured with antennas elevated, no obstructions, no RF interferers.
- *** Power source must supply short duration pulse currents as determined by the transmit power setting and the supply voltage.
- + Repeated exposure to > 2x full scale can result in permanent damage.

9.3 Mechanical Shock Limits

The accelerometers used by the G-Link-200 are sensitive instruments that can suffer mechanical damage if subjected to large or frequent accelerations beyond their rated range while in operation. To protect themselves from occasional over-range events, the accelerometer's control circuitry will temporarily reduce drive power to the sense element if acceleration exceeds twice the full-scale range. While this protective mode is enabled, the reported acceleration values will be inaccurate, and will appear to drift towards zero. Normal operation will resume after sensed acceleration returns to an acceptable level.

It is essential to note that, even with this automatic protection circuitry, repeated exposure of the accelerometer to shock and vibration acceleration levels exceeding twice its full-scale range will cause excessive mechanical wear. Over time, damage can accumulate and may cause the device to become defective. Care should be taken not to subject the sensor to accelerations beyond twice the full-scale range during normal operating conditions

10. Safety Information

This section provides a summary of general safety precautions that must be understood and applied during operation and maintenance of components in the MicroStrain Sensing Wireless Sensor Network. Throughout the manual, ANSI Z535 standard safety symbols are used to indicate a process or component that requires cautionary measures.

10.1 Disposal and Recycling

The G-Link-200-OEM contains printed circuit boards and electronic components. These items are known to contain toxic chemicals and heavy metals that are harmful to human health and the environment. Disposal is subject to federal and local laws. Do not discard the device in the trash. Follow proper electronic waste disposal protocol as dictated by federal and local authorities. Some states have programs for extracting reusable parts for recycling.

10.2 Radio Specifications

The G-Link-200-OEM employs a 2.4GHz IEEE 802.15.4- compliant radio transceiver for wireless communication. The radio is a direct- sequence spread spectrum radio and can be configured to operate on 16 separate frequencies ranging from 2.405 GHz to 2.480 GHz. Following the 802.15.4 standard, these frequencies are aliased as channels 11 through 26. For all newly manufactured nodes, the default setting is 2.425 GHz (channel 15).

G-Link-200-OEM

FCC ID: XJQMSLINK0010 IC ID: 8505A-MSLINK0010

This device complies with Part 15 of the United States FCC Rules, and Industry Canada's license-exempt RSSs. Operation is subject to the following two conditions: 1) This device may not cause interference, and 2) This device must accept any interference, including interference that may cause undesired operation of the device. Changes or modifications, including antenna changes not expressly approved by LORD Corporation could void the user's authority to operate the equipment.

Cet appareil est conforme à la Partie 15 des Règles de la FCC des États-Unis et aux RSSS exempts de licence d'Industrie Canada. Le fonctionnement est soumis aux deux conditions suivantes: 1) Cet appareil ne doit pas causer d'interférences et 2) Cet appareil doit accepter toute interférence, y compris les interférences pouvant entraîner un fonctionnement indésirable de l'appareil. Les changements ou modifications, y compris les changements d'antenne non expressément approuvés par LORD Corporation, pourraient annuler l'autorisation de l'utilisateur d'utiliser l'équipement.

11. References

11.1 Technical Support

There are many resources for product support found on the LORD Sensing website including technical notes, FAQs, and product manuals.

http://www.microstrain.com/support_overview.aspx

For further assistance our technical support engineers are available to help with technical and applications questions.

Technical Support sensing_support@LORD.com

Phone: 802-862-6629

Live Chat is available from the website during business hours: 9:00 AM to 5:00 PM (Eastern Time US & Canada)

11.2 Sales Support

Products can be ordered directly from the LORD Sensing website by navigating to the product page and using the Buy feature.

http://www.microstrain.com/inertial

For further assistance, our sales team is available to help with product selection, ordering options, and questions.

Sales Support sensing_sales@LORD.com

Phone: 802-862-6629

9:00 AM to 5:00 PM (Eastern Time US & Canada)

11.3 Related Documents

References are available on the LORD Sensing website including product user manuals, technical notes, and quick start guides. They may provide more accurate information than printed or file copies.

Document	Where to find it		
Online Wireless Network Calculator	http://sensorcloud.com/?onlyCalc=true		
Node Commander Software User Manual	http://www.microstrain.com/support/docs		
SensorCloud Overview	http://www.sensorcloud.com/		
SensorCloud Pricing	http://sensorcloud.com/pricing		
MathEngine® Overview	http://www.sensorcloud.com/mathengine		
LORD Sensing Wireless Sensors Network Software Development Kit	https://github.com/LORD-MicroStrain/SensorCloud		
Product Datasheets	http://www.microstrain.com/wireless/sensors		
Product Manuals and Technical Notes	http://www.microstrain.com/support/documentation		
Product Application Notes	http://www.microstrain.com/applications		
NIST Calibration Procedures	http://www.nist.gov/calibrations/		
ASTM Testing Procedures	http://www.astm.org/Standard/standards-and-publications.html		
ASTM Strain Gauge Installation Guide ASTM E1237-93	http://www.astm.org/Standards/E1237.htm		

Table 9. Related Documents

