
LORD IMU Integration with Ardupilot 
Asa Davis 

Colorado State University 
Fort Collins, Colorado 

United States of America 

Asa.Davis@rams.colostate.edu 

 

Rachel Masters 
Colorado State University 

Fort Collins, Colorado 
United States of America 

ramast1@colostate.edu 

 

Zach Fuchs 
Colorado State University 

Fort Collins, Colorado 
United States of America 

Zach.Fuchs@colostate.edu 

 

Christopher Robertson 
Colorado State University 

Fort Collins, Colorado 
United States of America 

Christopher.Robertson@colost
ate.edu 

 

Davis Schenkenberger 
Colorado State University  

Fort Collins, Colorado 
United States of America 

Davis.Schenkenberger@colost
ate.edu 

 

 

Erin Gunn 
Colorado State University 

Fort Collins, Colorado 
United States of America 

Erin.Gunn@colostate.edu 

 

Benjamin Say 
Colorado State University 

Fort Collins, Colorado 
United States of America 

Benjamin.Say@colostate.edu 

 

 

ABSTRACT 

Over the course of the Spring semester of 2021, we attempted to 
integrate support for LORD IMUs into the Ardupilot autonomous 
flight software suite. We did this for school credit here at CSU, as 
an independent study in partnership with the CSU Drone Center. 
A good portion of the semester was spent on research and study, 
as most of the technologies and existing libraries that we worked 
with were new to us. After lots of learning, we began 
development and testing of custom Ardupilot builds on a Pixhawk 
4 with a LORD 3DM-CX5-45 IMU. By the end of the semester, 
we completed one test flight, in which we successfully launched 
and flew a fixed-wing aircraft in autonomous mode using our 
custom Ardupilot build, which used accelerometer, gyroscope, 
barometer, and magnetometer data from only the LORD IMU, 
with the Pixhawk’s built in IMU completely disabled. There is 
still much work to be done to get our modifications to Ardupilot 
production ready, and we hope to continue work on this project in 
the future. 

Keywords 

Ardupilot; LORD; IMU; Drone; Pixhawk; MSCL; AHRS. 

1. INTRODUCTION 
The goal of our project was to create firmware that would 
successfully integrate a high precision inertial measurement unit 
(IMU) into an existing drone setup. Drones already have their 
own internal IMU's, but those IMU's lack the accuracy needed for 
larger flight tasks. For shorter flights and recreational flying, the 
internal IMU is precise enough to keep the drone running as 
expected. As time goes on, small errors in the IMU readings add 
up and the total error may end up being very large by the end of a 
long flight. By using a high precision IMU, we can extend the 
flight time of the drone by increasing the accuracy of readings, 
thereby reducing the small errors. We selected the Lord IMU, a 
high precision IMU designed for spacecraft. Since it is made for 

devices that require almost exact measurements, the IMU's 
precision will keep our drone on the correct path for longer 
periods of time.  
 

1.1 Applications 
Having a drone that can fly for long periods of time is useful for a 
variety of missions. Appraisers and foresters alike could use these 
drones for mass surveying of wildlife and structural damage due 
to fire. Currently, nationwide postal and package delivery 
companies are looking at drone delivery, which would require a 
drone that is accurate and flies long enough to deliver many 
packages. As people explore more uses of different drones and 
robots, a high precision option can even help archeologists and 
marine biologists with their work by going to places that humans 
cannot. Improving the accuracy of existing drone software opens 
many more possibilities for drones to be used to help people and 
make new discoveries, and that is why we undertook this project. 
 

2. APPROACH 

2.1 Hardware 
For this project, our team had access to three LORD IMUs and 
two Pixhawk flight controllers. The three IMUs were a 3DM-
CX5-45, a 3DM-CX5-25, and a 3DM-GX5-45. The two Pixhawks 
were a Pixhawk 4 and Pixhawk 1. Our goal was to connect the 
Pixhawk 4 to the 3DM-CX5-45 over a UART cable, using the 
UART / I2C B port on the Pixhawk, which is traditionally used 
for connecting an external GPS unit. We were able to test packet 
configuration on all three IMUs, and run our custom Ardupilot 
builds using SITL, however we were limited to the one Pixhawk 4 
and the one 3DM-CX5-45 as our only means of testing builds on 
full hardware. Throughout the semester we made several attempts 
to set up additional hardware configurations using the Arduino 
Uno R3 and Raspberry Pi Pico, but these lead mostly to more 
complications. Developing with SITL, and testing on the Pixhawk 
4 proved to be the most efficient strategy. 



2.2 Research Phase 
2.2.1 LORD 
2.2.1.1 MSCL 
The first approach we entertained was using the MicroStrain 
Communication Library (MSCL). Since the MSCL was created to 
make interacting with the LORD IMU simple, the MSCL seemed 
like a promising solution for getting the LORD to communicate in 
the way we wanted. As we researched the MSCL, we found that 
the MSCL required many other libraries as dependencies, and 
getting these dependencies would increase the resulting build by 
over the total capacity of the Pixhawk 4 memory. Since memory 
was an issue, we could not use the MSCL; however, we were able 
to learn how the checksum was calculated for each packet in the 
MSCL, and we used that information in creating our own 
firmware. 

2.2.1.2 GUI Tools 
The GUI tools for setting up and testing the LORD IMUs were 
also helpful for our research and development. They allowed us to 
get a binary (BIN) file early in the semester. Using the BIN file, 
we could begin working with the packets and parsing out the data 
we needed even if all of our team members did not have access to 
a physical IMU. The GUI also allowed us to easily check that we 
were parsing the correct data. It provided an easy to use platform 
that allowed us to quickly configure the IMU to stream data at a 
certain rate without sending packets over the uart port. We used it 
for debugging as well by checking to make sure we got the same 
values in Ardupilot that we got from the IMU. 

2.2.2 Ardupilot 
2.2.2.1 Frontend and Backend Split 
When we first started working with Ardupilot, we found that 
learning the codebase to an extent that would allow us to expand 
on it was a significant task. We spent several weeks studying the 
documentation and trying to learn how the existing sensor 
libraries provided data to the rest of the software. Initially, we 
discovered that the InertialSensor libraries provided code for 
reading data from the internal IMUs on most flight controllers, 
and thought this would be a good approach to take. We 
documented and traced code to determine how the internal IMU in 
the Pixhawk 4 provided data to the other libraries. We found that 
the sensor libraries were split into a specific backend class for 
each sensor model which communicated directly with the 
hardware, and a generic backend class which received data from 
the backends and provided it to the rest of the software. Our first 
attempt at integrating the LORD IMU involved writing a new 
backend class that extended the AP_InertialSensor_Backend 
class. As we progressed in this direction, we began to realize that 
this approach was much more suited to the integration of an 
internal sensor, as opposed to our IMU which was connected via 
UART. 

2.2.2.2 External AHRS 
Upon further exploration of the codebase, we discovered a new 
addition to Ardupilot, the AP_ExternalAHRS class. This class 
was written to support the integration of the VectorNav VN-300 
IMU, a sensor with a very similar purpose to our LORD IMUs. 
We realized that leveraging this class would make our job much 
easier. 

2.3 Development Phase 
2.3.1 Ping and Packet Parsing 
To understand how serial devices work with computers, we 
started by writing a simple script in python that sent a ping to and 
received information from the IMU, which was connected via 
USB to the computer the script was created on. Once we got this 

script to work, we started translating the script into C++ so that it 
would work with the Ardupilot library, which is also in C++. 
Transitioning between the two languages was somewhat tricky. 
The first C++ script was developed using a library that modeled 
pyserial, but it had too many dependencies to fit with the 
Ardupilot library. The C++ script was then reworked into a test 
sketch that used the serial communication resources in the 
Ardupilot library, and once that was working, the script was 
further developed to read and parse packets. 

2.3.2 SITL Testing 
As mentioned previously, over the course of the project we had 
access to only one functioning pair of IMU and Pixhawk. This 
meant that much of the development and testing was done on the 
Ardupilot SITL (Software in the Loop) simulator. As we learned 
to use SITL we found it actually provided many benefits. Running 
the code with SITL allowed for much easier breakpoint debugging 
and the code built for SITL much more quickly than on hardware. 
One challenge we ran into with SITL development was 
connecting the IMU. Eventually we found a way to plug it into a 
USB port and map the USB port to a device from the Ardupilot 
serial manager, allowing us to effectively test communication 
with the IMU through SITL. 

2.3.3 GDB Debugging 
While debugging was fairly straightforward with SITL, when we 
ran new code on our Pixhawk and IMU and encountered problems 
it was more difficult to troubleshoot. Initially lots of debugging 
was done simply by placing print statements around the code to 
determine where it was failing. This strategy has obvious 
disadvantages, namely it is inefficient and can create more 
confusion. We purchased a Segger J-Link EDU Mini for the 
purpose of hardware breakpoint debugging. We used the JLink 
GDB server in conjunction with the built in Ardupilot GDB 
debugging commands. This setup allowed us to analyze what our 
code was doing much more precisely when we ran it on hardware. 

2.3.4 Packet Collection Inside of Test Sketch 
Once communication with the IMU via test sketch was achieved, 
the next step was to collect and parse the information from the 
IMU.  

2.3.4.1 MIP Protocol 
While we knew the packet size and rate that the IMU worked at, 
reading a packet’s worth of bytes at the specified rate was not an 
effective method for packet collection. We needed to know when 
a packet started and ended, handle the possibility of corrupted 
packets, and handle garbage bytes between packets. The solution 
we came up with was to set up a separate thread to read bytes into 
a ring buffer of sufficient size as quickly as the LORD would give 
them to us. The thread ran a loop that performed three actions: 
read bytes into the buffer, parse available bytes into a packet, and 
when a full packet had been constructed, parse the sensor data 
from this packet and send it on its way. The MIP protocol 
included two sync byte that told us where the packet began, and a 
fletcher checksum that allowed us to verify the correctness of the 
bytes. The ring buffer allowed us to hold on to the bytes as we 
constructed the packet and start over again after the sync bytes in 
the event that our checksum didn’t match. 

2.3.4.2 Packet Parsing 
After researching the MIP protocol used by the LORD IMU and 
reading the IMU manual to learn the packet structure, we looked 
at the packets we had collected from the IMU and began parsing 
them out. We separated the header and checksum into their own 
variables, and then we sent the packet payload to another function 
that would parse it. We determined which data we would need to 
parse by looking at Ardupilot's AP_ExternalAHRS library that 



had implementation for an external VectorNav sensor. Initially, it 
was complicated to use this library as it was primarily built for the 
VectorNav sensor, but we discovered that one of the lead 
developers at Ardupilot was creating code that would split up the 
frontend and backend firmware. This split allowed us to develop 
for the LORD sensor using the existing backend. Using the 
existing implementation as a guide, we parsed information from 
the LORD data sets and sent that data to the appropriate handlers. 
Since we programmed packet parsing in a test sketch first, it was 
easy to test and debug with or without hardware, but we had to 
make modifications when we moved our code into the 
AP_ExternalAHRS library. 

2.3.5 Moving Packet Parsing into Ardupilot Build 
When we initially moved our code from the test sketch, our goal 
was to get the code inside the library in any way that would make 
it work. We copied and pasted a lot of the code from our test 
sketch and worked with it until it would build and run. This 
exercise led to some messy implementation and some hard coding 
to get the build to run correctly. After we got it running, we went 
back and cleaned up the implementation by making functions that 
were intentional to what we were doing, organizing the code to 
improve readability, and researching different flags and fields we 
would need to use in our preflight drone checks. For packet 
parsing, we implemented a function with a switch statement that 
checked for packets in the data sets we wanted and sent them to 
separate functions for more parsing. Those separate functions 
determined which kind of data was given and stored the data in 
the appropriate variables. Those variables were later passed to the 
appropriate handlers in a different function. By structuring our 
code this way, we can parse and handle more data by introducing 
additional new variables into the switch statements and building 
any necessary functions to parse them, which allows us to 
continue a further integration of the IMU with relative ease 
compared to when we started integration. 

3. CONCLUSION 

3.1 Accomplishments 
After much research, testing, and development, we were able to 
successfully deploy a custom Ardupilot build onto a fixed-wing 

platform, and fly it using accelerometer, compass, barometer, and 
gyroscope data from only the LORD IMU. We had to solve many 
difficult problems to get to this point, most notably the problems 
of communicating with the LORD IMU from within Ardupilot, 
and the problem of getting the sensor data to the correct place 
within the firmware so that the other Ardupilot libraries could 
access and utilize it. Additionally, we have created a structure 
within our ExternalAHRS_LORD class that should enable us to 
implement GNSS data in the future. Our first test flight suffered 
from severe oscillations in autonomous mode. However, the 
aircraft was able to stabilize itself, fly between waypoints, and 
even take off autonomously using data from the LORD IMU. 

3.2 Future Work 
The main goal of our future work is to get the LORD IMU 
support merged into the Ardupilot library. This will involve 
rewriting the code that we have to be cleaner and production 
ready, implementing some functions that are currently hardcoded 
in a more elegant way, and creating thorough documentation of 
our code and how to use it. In addition to these logistics, we need 
to add full support for LORD data. This task will involve 
switching the raw data we are currently reading to filtered data as 
well as adding support for GPS. Additionally, we will need to add 
code to send out packets during the initialization process to ensure 
the IMU is correctly configured every time. We will also add 
LORD parameters in Ardupilot and provide detailed 
documentation on how to build Ardupilot with the LORD IMU 
support. While there is much work to be done yet, we have 
surpassed the largest hurdle, so the completion of our main goal is 
doable and promising. 

4. ACKNOWLEDGMENTS 
Our thanks to LORD for giving us their IMU to work with and to 
Ardupilot for their software. 

 

 


	1. INTRODUCTION
	The goal of our project was to create firmware that would successfully integrate a high precision inertial measurement unit (IMU) into an existing drone setup. Drones already have their own internal IMU's, but those IMU's lack the accuracy needed for ...
	1.1 Applications

	Having a drone that can fly for long periods of time is useful for a variety of missions. Appraisers and foresters alike could use these drones for mass surveying of wildlife and structural damage due to fire. Currently, nationwide postal and package ...
	2. APPROACH
	2.1 Hardware
	2.2 Research Phase
	2.2.1 LORD
	2.2.1.1 MSCL
	2.2.1.2 GUI Tools

	2.2.2 Ardupilot
	2.2.2.1 Frontend and Backend Split
	2.2.2.2 External AHRS


	2.3 Development Phase
	2.3.1 Ping and Packet Parsing
	2.3.2 SITL Testing
	2.3.3 GDB Debugging
	2.3.4 Packet Collection Inside of Test Sketch
	2.3.4.1 MIP Protocol
	2.3.4.2 Packet Parsing

	2.3.5 Moving Packet Parsing into Ardupilot Build


	3. CONCLUSION
	3.1 Accomplishments
	3.2 Future Work

	4. ACKNOWLEDGMENTS

