3DM-GX5-15
3DM-GX5-25
Product no longer stocked – limited availability
Contact for pricing and lead time--a minimum order quantity may apply
Product no longer stocked – limited availability
Contact for pricing and lead time--a minimum order quantity may apply
Product no longer stocked – limited availability
Contact for pricing and lead time--a minimum order quantity may apply
Product no longer stocked – limited availability
Contact for pricing and lead time--a minimum order quantity may apply
Product no longer stocked – limited availability
Contact for pricing and lead time--a minimum order quantity may apply

Pages

The 3DM®-GX5-15 is the smallest and lightest industrial VRU available. It features a triaxial accelerometer, gyroscope, and temperature sensors to achieve the optimum combination of measurement qualities.

The 3DM-GX5-15 is ideally suited for a wide range of applications, including platform stabilization antenna pointing and usage monitoring.
Datasheet Manual
The 3DM®-GX5-25 is the smallest and lightest precision industrial AHRS available. It features a fully calibrated and temperature compensated triaxial accelerometer, gyroscope, and magnetometer to achieve the optimum combination of measurement qualities under all dynamic conditions. The dual on-board processors run an exclusive Auto-Adaptive Extended Kalman Filter (EKF) for outstanding dynamic attitude estimates, making it ideal for a wide range of applications, including platform stabilization, robotics, and vehicle health and usage monitoring.
Datasheet Manual

The 3DM-GX3® -35 is a miniature industrial-grade all-in-one navigation solution with integrated GPS and magnetometers, high noise immunity, and exceptional performance.

Product Highlights

  • High performance integrated GPS receiver and MEMS sensor technology provide direct and computed PVA outputs in a small package.
  • Triaxial accelerometer, gyroscope, magnetometer, temperature sensors, and a pressure altimeter achieve the best combination of measurement qualities.
  • Dual on-board processors run a sophisticated Extended Kalman Filter (EKF) for excellent position, velocity, and attitude estimates.
Datasheet

The SG-Link® -LXRS® is a small, low-power, two-channel analog input sensor node with many sampling options.

Product Highlights

  • One differential and one single-ended analog input channel and an internal temperature sensor
  • Ideal for remote and long term measurement of many Wheatstone bridge and analog-type sensors including: strain, force, torque, pressure, acceleration, vibration, magnetic field, displacement and geophones
  • Supports continuous, burst, and event-triggered sampling and datalogging to internal memory
  • User-programmable sample rates up to 4096 Hz
  • IP65/66 environmental enclosures available
Datasheet Manual Software

The G-Link2™ -LXRS® is a ruggedized wireless sensor node with high-speed sampling and optional integrated three-axis accelerometer or external single-axis accelerometer.

Product Highlights

  • On-board triaxial, or external single axis MEMS accelerometer with up to +/-200 g measurement range
  • Wireless framework is ideal for measuring vibration, and acceleration in remote applications.
  • High resolution data with 16-bit A/D converter
  • >User-programmable sample rates up to 10 KHz
  • Transmit real-time data or log to memory.
  • Small, lightweight IP67 enclosure
Datasheet Manual Software

The V-Link® -LXRS® is a versatile seven channel analog wireless sensor node with high sample rates and datalogging capability.

Product Highlights

  • Four differential and three single-ended analog input channels and an internal temperature sensor
  • Ideal for remote and long term measurement of many Wheatstone bridge and analog-type sensors including: strain, force, torque, pressure, acceleration, vibration, magnetic field, displacement and geophones
  • Supports continuous, burst, and event-triggered sampling and datalogging to internal memory
  • l User-programmable sample rates up to 10 KHz
  • l IP65/66 environmental enclosures available
Datasheet Manual Software

MicroStrain’s SensorCloud™ is a unique sensor data storage, visualization and remote management platform that leverages powerful cloud computing technologies to provide excellent data scalability, rapid visualization, and user programmable analysis.  Originally designed to support long-term deployments of MicroStrain wireless sensors, SensorCloud now supports any web-connected third party device, sensor, or sensor network through a simple OpenData API.   

  • Core SensorCloud features include: Virtually unlimited data storage with triple-redundant reliability, ideal for collecting and preserving long-term sensor data streams
  • Time series visualization & graphing tool with exceptionally fast response, allows viewers to navigate through massive amounts of data, and quickly zero in on points of interest
  • MathEngine® feature allows users to quickly develop and deploy data processing and analysis apps that live alongside their data in the cloud
  • Flexible SMS and email alert scripting features helps users to create meaningful and actionable alerts.

To sign up for a free account, click here.

Overview

SensorCloud is useful for a variety of applications, particularly where data from large sensor networks needs to be collected, viewed, and monitored remotely.  Structural health monitoring and condition based monitoring of high value assets are applications where commonly available data tools often come up short in terms of accessibility, data scalability, programmability, or performance.    MicroStrain’s SensorCloud was born out of a need for a better tool for these types of applications but the core features and benefits can add value to a much broader range of applications.

Datasheet Manual

The IEPE-Link™ -LXRS® specialized high-speed node is designed for synchronized, periodic burst sampling of piezoelectric devices.

Product Highlights

  • Designed for high speed, high resolution periodic burst sampling of Integral Electronic Piezoelectric (IEPE) and Integrated Circuit Piezoelectric (ICP®) accelerometers
  • Ideal for vibration sensing in challenging applications, such as critical structure and machine health monitoring
  • High resolution data with 24-bit A/D converter
  • User-programmable 1 KHz to 104 KHz sample rates
  • 109.5 dB dynamic range
  • User-selectable low pass filtering
Datasheet Manual Software

The G-Link® -LXRS® is a low-cost integrated accelerometer node with ± 2 or ±10 g measurement range and many sampling options.

Product Highlights

  • On-board high-speed triaxial ± 2 g or ± 10 g MEMS accelerometer with an internal temperature sensor
  • Wireless framework is ideal for measuring vibration, tilt, inclination, and acceleration in remote applications.
  • Supports continuous, burst, and event-triggered sampling and datalogging to internal memory
  • User-programmable sample rates up to 4096 Hz
  • 2 MB on-board non-volatile data storage
  • Simultaneously transmit real-time data and log to memory.
  • IP65/66 environmental enclosures available
Datasheet Manual Software

The SG-Link® -RGD -LXRS® ia a versatile, ruggedized four-channel analog sensor node with integrated triaxial accelerometer.

 

Product Highlights

 

  • Four analog input channels, integrated three-axis accelerometer, and an internal temperature sensor
  • Integrated strain sensor signal conditioning, embedded processing, and environmentally hardened form factor ideal for permanently mounting over strain gauges
  • Supports conventional bonded foil, piezoelectric-resistive, Wheatstone bridge, and modular Columbia Research
  • Labs-type strain gauges
  • Integrated triaxial accelerometer with MEMS technology and +/- 16 g range
  • User-programmable sample rates up to 4096 Hz

LORD MicroStrain® LXRS® Wireless Sensor Networks enable simultaneous, high- speed sensing and data aggregation from scalable sensor networks. Our wireless sensing systems are ideal for sensor monitoring, data acquisition, performance analysis, and sensing response applications.

The gateways are the heart of the LORD MicroStrain wireless sensing system. They coordinate and maintain wireless transmissions across a network of distributed wireless sensor nodes . The LORD MicroStrain LXRS wireless communication protocol between LXRS nodes and gateways enable high- speed sampling, ±32 microseconds node- to- node synchronization, transmission range up to 2 kilometers, and lossless data throughput under most operating conditions.
Users can easily program nodes for data logging, continuous, and periodic burst sampling with the Node Commander ® software. The web- based SensorCloud™ interface optimizes data aggregation, analysis, presentation, and alerts for gigabytes of sensor data from remote networks.

 


Pages

List Price:
$1,195
List Price:
$1,495

Pages

Best in Class Performance

  • Fully calibrated, temperature-compensated, and mathematically-aligned to an orthogonal coordinate system for highly accurate outputs
  • Bias tracking, error estimation, threshold flags, and adaptive noise modeling allow for fine tuning to conditions in each application
  • High-performance, low-drift gyros with noise density of 0.005°/sec/√Hz and VRE of 0.001°/s/g2RMS
  • Accelerometer noise as low as 25 ug/√Hz

Ease of Use

  • User-defined sensor-to-vehicle frame transformation
  • Common protocol between 3DM-GX3, GX4, RQ1, GQ4, GX5, and CV5
  • Robust, forward compatible MIP packet protocol

Cost Effective

  • Out-of-the box solution reduces development time
  • Volume discounts

Best in Class Performance

  • Bias tracking, error estimation, threshold flags, and adaptive noise modeling allow for fine tuning to conditions in each application
  • Accelerometer noise as low as 25 ug/√Hz
  • Smallest and lightest industrial AHRS with Adaptive Kalman Filter available

Ease of Use

  • Automatic magnetometer calibration and anomaly rejection eliminates the need for field calibration
  • Automatically compensates for vehicle noise and vibration
  • Easy integration via comprehensive and fully backwards-compatible communication protocol
  • Common protocol between 3DM-GX3, GX4, RQ1, GQ4, GX5, and CV5 inertial sensor families for easy migration

Cost Effective

  • Out-of-the box solution reduces development time
  • Volume discounts

Best in Class Performance

  • Fully calibrated, temperature compensated, and mathematically aligned to an orthogonal coordinate system for highly accurate outputs
  • Bias tracking, error estimation, threshold flags, and adaptive noise, magnetic, and gravitational field modeling allow for fine tuning to conditions in each application.
  • High performance, low drift gyros with noise density of 0.005°/sec/√Hz and VRE of 0.001°/s/g

2RMS

  • Smallest and lightest industrial GPS/INS available

Ease of Use

  • User-defined sensor-to-vehicle frame transformation
  • Easy integration via comprehensive SDK
  • Common protocol with the 3DM-GX3® and 3DM-RQ1-45™ sensor families for easy migration

Cost Effective

  • Out-of-the box solution reduces development time.
  • Volume discounts

Wireless Simplicity, Hardwired Reliability

High Performance

  • Scalable, long range wireless sensor networks up to 2 km
  • Lossless data throughput under most operating conditions

Ease of Use

  • Rapid deployment with wireless framework
  • Low power consumption allows extended use.
  • Remotely configure nodes, acquire and view sensor data with Node Commander®.
  • Optional web-based SensorCloud™ interface optimizes data storage, viewing, and analysis.
  • Easy integration via comprehensive SDK

Cost Effective

  • Out-of-the box wireless sensing solution reduces development and deployment time.
  • Volume discounts

Wireless Simplicity, Hardwired Reliability

High Performance

  • Node-to-node synchronization up to ±32 microseconds
  • Scalable, long range wireless sensor networks up to 2 km
  • User-programmable filters for optimized anti-aliasing

Ease of Use

  • Internal or external accelerometer option for installation versatility
  • Remotely configure nodes, acquire and view sensor data with Node Commander®.
  • Optional web-based SensorCloud™ interface optimizes data storage, viewing, and analysis.
  • Easy integration via comprehensive SDK

Cost Effective

  • Out-of-the box wireless sensing solution reduces development and deployment time.
  • Volume discounts

Wireless Simplicity, Hardwired Reliability

High Performance

  • Node-to-node synchronization up to ±32 microseconds
  • High resolution data with 16-bit A/D converter
  • Scalable, long range wireless sensor networks up to 2 km
  • Lossless data throughput under most operating conditions

Ease of Use

  • Rapid deployment with wireless framework
  • Event driven triggers for efficient monitoring
  • Remotely configure nodes, acquire and view sensor data with Node Commander®.
  • Optional web-based SensorCloud™ interface optimizes data storage, viewing, and analysis.
  • Easy integration via comprehensive SDK

Cost Effective

  • Reduction of costs associated with wiring
  • Low-cost per channel with 7 input channels per node

Key features of SensorCloud include:

  • OpenData API: Allows users to securely upload sensor data from any web-connected source or platform, and download selected or entire sets of data
  • FastGraph: Time series visualization & graphing tool with exceptionally fast response allows viewers to navigate through massive amounts of data, and quickly zero in on points of interest
  • Custom Alerts: Flexible SMS and email alert scripting features helps users to create meaningful and actionable alerts
  • LiveConnect: Allows remote configuration, viewing, and record high speed data streams from any wireless sensor cluster on your Ethernet network in real-time
  • MathEngine: Enables users to quickly develop and deploy data processing and analysis apps that live alongside their data in the cloud

 

Wireless Simplicity, Hardwired Reliability™

High Performance

  • Node-to-node synchronization up to ±32 microseconds
  • Lossless data throughput under most operating conditions
  • Extended wireless communication range to 2km

Ease of Use

  • High capacity, rechargeable battery for extended use
  • Remotely configure nodes, acquire and view sensor data with Node Commander®.
  • Optional web-based SensorCloud™ interface optimizes data storage, viewing, and analysis.
  • Accepts most IEPE accelerometers

Cost Effective

  • Out-of-the box wireless sensing solution reduces development and deployment time.
  • Volume discounts

Wireless Simplicity, Hardwired Reliability

High Performance

  • Node-to-node synchronization up to ±32 microseconds
  • Scalable, long range wireless sensor networks up to 2 km
  • Lossless data throughput under most operating conditions

Ease of Use

  • Rapid deployment with wireless framework
  • Low power consumption allows extended use.
  • Remotely configure nodes, acquire and view sensor data with Node Commander®.
  • Optional web-based SensorCloud™ interface optimizes data storage, viewing, and analysis.
  • Easy integration via comprehensive SDK

Cost Effective

  • Reduction of costs associated with wiring
  • Volume discounts

Wireless Simplicity, Hardwired Reliability

High Performance

  • Node-to-node synchronization up to ±32 microseconds
  • High resolution data with 16-bit A/D converter
  • Scalable, long range wireless sensor networks up to 2 km

Ease of Use

  • Flex bonding cable and node form factor allow quick installation over existing strain gauges
  • Low profile, environmentally sealed enclosure
  • On-board shunt calibration

Cost Effective

  • Reduction of costs associated with wiring
  • Out-of-the box wireless sensing solution reduces development and deployment time.

Pages

Sensor

  • High Performance Accelerometer
    • 25 µg/√Hz (8g option)
    • 80 µg/√Hz (20g option)
  • Super-stable Gyro
    • 8 dph in-run bias (-40 to +85°C)
    • Offset temperature hysteresis 0.05°/s
    • ARW 0.3°/√hr
  • Pitch-roll static/dynamic accuracy ±0.25°/0.4°

Operation

  • IMU sampling rate up to 1000Hz
  • Auto-adaptive EKF output rate up to 500Hz
  • Independently configurable IMU and EKF outputs
  • Forward compatible MIP Protocol optimizes bandwidth
  • SensorConnect software for configuration, control, display, and logging

Package

  • CNC Anodized Aluminum
  • Precision alignment features
  • Highly compact and low profile
    • 36.0 mm x 36.6 mm x 11 mm
    • 16.5 grams
  • USB and RS-232 (up to 921600 BAUD) interfaces
  • –40 to +85 °C operating temperature range

Sensor

  • High Performance Accelerometer
    • 25 µg/√Hz (8g option)
    • 80 µg/√Hz (20g option)
  • Super-stable Gyro
    • 8 dph in-run bias (-40 to +85°C)
    • Offset temperature hysteresis 0.05°/s
    • ARW 0.3°/√hr
  • Pitch-roll static/dynamic accuracy ±0.25°/0.4°

Operation

  • IMU sampling rate up to 1000Hz
  • Auto-adaptive EKF output rate up to 500Hz
  • Independently configurable IMU and EKF outputs
  • Forward compatible MIP Protocol optimizes bandwidth
  • SensorConnect software for configuration, control, display, and logging

Package

  • CNC Anodized Aluminum
  • Precision alignment features
  • Highly compact and low profile
    • 36.0 mm x 36.6 mm x 11.1 mm
    • 16.5 grams
  • USB and RS-232 (up to 921600 BAUD) interfaces
  • –40 to +85 °C operating temperature range

General

Integrated sensors

Triaxial accelerometer, triaxial gyroscope, triaxial magnetometer, and temperature sensors,

Data outputs

Inertial Measurement Unit (IMU) outputs: acceleration, angular rate, magnetic field , deltaTheta, deltaVelocity

Computed outputs

LLH position, NED velocity, attitude estimates (in Euler angles, quaternion, orientation matrix),

Resolution

16 bit SAR oversampled to 17 bits

Inertial Measurement Unit (IMU) Sensor Outputs

 

Accelerometer

Gyroscope

Magnetometer

Measurement range

±5 g (standard)

±1.7±16, and ±50 g (option)

300°/sec (standard)

±50, ±600,±1200 °/sec (options)

±2.5 Gauss

Non-linearity

±0.1 % fs

±0.03 % fs

±0.4 % fs

Bias instability

±0.04 mg

18°/hr

--

Initial bias error

±0.002 g

±0.25°/sec

±0.003 Gauss

Scale factor stability

±0.05 %

±0.05 %

±0.1 %

Noise density

80 µg/Hz

0.03°/sec/Hz

100

µGauss/Hz

Alignment error

±0.05°

±0.05°

±0.05°

Adjustable bandwidth

225 Hz (max)

440 Hz (max)

230 Hz (max)

IMU filtering

Digitally filtered (user adjustable) and scaled to physical input; coning and sculling integrals computed at 1 kHz

Sampling rate

30 kHz

30 kHz

7.5 kHz

IMU data output rate

1 Hz to 1000 Hz

Computed Outputs

Attitude accuracy

±0.5° roll, pitch, and heading (static, typ), ±2.0° roll, pitch, and heading (dynamic, typ)

Attitude heading range

360° about all axes

Attitude resolution

< 0.01°

Attitude repeatability

0.2° (typ)

Calculation update rate

1000 Hz

Computed data output rate

1 Hz to 500 Hz

Global Positioning System (GPS) Outputs

Receiver type

50-channel, L1 frequency, C/A code SBAS: WAAS, EGNOS, MSAS

GPS data output rate

1 Hz to 4 Hz

Time-to-first-fix

Cold start: 27 sec, aided start: 4sec, hot start: 1 sec

Sensitivity

Tracking: -159 dBm, cold start: -147 dBm, hot start: -156 dBm

Velocity accuracy

0.1 m/sec

Heading accuracy

0.5°

Horizontal position accuracy

GPS: 2.5 m CEP SBAS: 2.0 m CEP

Time pulse signal accuracy

30 nsec RMS

< 60 nsec 99%

Acceleration limit

4 g

Altitude limit

No limit

Velocity limit

500 m/sec (972 knots)

Operating Parameters

Communication

USB 2.0 (full speed) RS232 (9,600 bps to 921,600 bps, default 115,200)

Power source

+ 3.2 to + 16 V dc

Power consumption

200 mA (typ), 250 mA (max) - Vpri = 3.2 V dc to 5.5

V dc

850 mW (typ), 1000 mW (max) - Vaux = 5.2 V dc to

16 V dc

Operating temperature

-40 °C to +65 °C

Mechanical shock limit

500 g

Physical Specifications

Dimensions

44.2 mm x 24.0 mm x 13.7 mm (excluding mounting tabs), 36.6 mm (width across tabs)

Weight

23 grams

Regulatory compliance

ROHS

Integration

Connectors

Data/power output: micro-DB9

GPS antenna: MMCX type

Software

MIPMonitor, MIPHard and Soft Iron

Calibration, Windows XP/Vista/7/8 compatible

Compatibility

Protocol compatibility with 3DM-RQ1and 3DM- GX4® sensor families.

Software development kit (SDK)

MIPdata communications protocol with sample code available (OS and computing platform independent)

 

General

Sensor input channels

Differential analog, 1 channel

Single-ended analog, 1 channel

Integrated sensors

Internal temperature, 1 channel

Data storage capacity

2 M bytes (up to 1,000,000 data points, data type dependent)

Analog Input Channels

Measurement range

Differential: full-bridge, 350 Ω (factory configurable) Single-ended: 0 to 3 V dc

Accuracy

± 0.1% full scale typical

Resolution

12 bit

Anti-aliasing filter bandwidth

Single-pole Butterworth

-3 dB cutoff @ 250 Hz (factory configurable)

Bridge excitation voltage

+3 V dc, 50 mA total for all channels

(pulsed @ sample rates 16 Hz to conserve power)

Measurement gain and offset

User-selectable in software on differential channels gain values from 104 to 1800

Integrated Temperature Channel

Measurement range

-40 °C to 85 °C

Accuracy

± 2 °C (at 25 °C) typical

Resolution

12 bit

Sampling

Sampling modes

Synchronized, low duty cycle, datalogging

Sampling rates

Continuous sampling: 1 sample/hour to 512 Hz

Periodic burst sampling: 32 Hz to 4096 Hz

Datalogging: 32 Hz to 4096 Hz

Sample rate stability

± 3 ppm

Network capacity

Up to 2000 nodes per RF channel (and per gateway) depending on the number of active channels and sampling settings. Refer to the system bandwidth calculator: http://www.microstrain.com/configure-your-system

Synchronization between nodes

± 32 μsec

Operating Parameters

Radio frequency (RF)

transceiver carrier

2.405 to 2.470 GHz direct sequence spread spectrum over 14 channels, license free worldwide, radiated power programmable from 0 dBm (1 mW) to 16 dBm (39 mW); low power option available for use outside the U.S.- limited to 10dBm (10mW)

Range for bi-directional RF link

70 m to 2 km line of sight with RF power setting

RF communication protocol

IEEE 802.15.4

Power source

Internal: 3.7 V dc, 250 mAh lithium ion rechargeable battery

External: +3.2 to +9.0 V dc

Power consumption

See power profile :

http://files.microstrain.com/SG-Link-LXRS-Power-Profile.pdf

Operating temperature

-20 ˚C to + 60 ˚C (extended temperature range available with custom battery/enclosure, -40 ˚C to + 85 ˚C electronics only)

Acceleration limit

500 g standard (high g option available)

Physical Specifications

Dimensions

58 mm x 50 mm x 21 mm

Weight

42 grams

Environmental rating

Indoor use (IP65/66 enclosures available)

Enclosure material

ABS plastic

Integration

Compatible gateways

All WSDA® base stations and gateways

Compatible sensors

Bridge type analog sensors, 0 to 3 V dc analog sensors

Connectors

Screw terminal block

Shunt calibration

Internal shunt calibration resistor 499 KΩ, differential channel

Software

SensorCloud™, SensorConnect™, Node Commander®, Windows 7 (or newer)

Software development

Open-source MicroStrain Communications Library (MSCL) with sample code available in C++,Python,and.NET formats (OS and computing platform independent): http://lord-microstrain.github.io/MSCL/

Regulatory compliance

FCC (U.S.), IC (Canada), ROHS

General

Sensor input channels

Single-axis MEMS accelerometer (option), 1 channel

Integrated sensors

Triaxial MEMS accelerometer (option), 3 channels

Data storage capacity

4 M bytes (up to 2,000,000 data points, data type dependent)

Accelerometer Channels (integrated or external)

Measurement range

± 2 g or ± 10 g standard (± 5 g, ± 30 g, ± 50 g, ±100 g, or ± 200 g options available)

Accelerometer bandwidth

0 to = 100 Hz @ -3 dB (high bandwidth option available)

Resolution

16 bit

Accuracy

0.3 % error (typical @ 25 Hz, 1/2 of dynamic range with sinusoidal input)

Noise

± 2 g: 130 µ g/vHz , ± 10 g: 420 µ g/vHz

(typical with 100 Hz anti- aliasing filter setting)

Anti-aliasing filter bandwidth

Fifth order low-pass Butterworth filter, user programmable bandwidth from 26 Hz to 1 KHz

Integrated Temperature Channel

Measurement range

-40 °C to 125 °C

Accuracy and resolution

± 5 °C (over full range) , 16 bit

Sampling

Sampling modes

Synchronized, low duty cycle, datalogging

Sampling rates

Continuous sampling: 1 32 to 512 Hz

Periodic burst sampling: 32 to 512 Hz

Datalogging: 32 Hz to 10 KHz

Sample rate stability

± 3 ppm

Network capacity

Up to 2000 nodes per RF channel (and per gateway) depending on the number of active channels and sampling settings. Refer to the system bandwidth calculator: http://www.microstrain.com/configure-your-system

Synchronization between nodes

± 32 μsec

Operating Parameters

Radio frequency (RF)

transceiver carrier

2.405 to 2.470 GHz direct sequence spread spectrum over 14 channels, license free worldwide, radiated power programmable from 0 dBm (1 mW) to 16 dBm (39 mW); low power option available for use outside the U.S.- limited to 10dBm (10mW)

Range for bi-directional RF link

70 m to 2 km line of sight with RF power setting

RF communication protocol

IEEE 802.15.4

Power source

Internal: 3.6 V dc,2.6 Ah, AA replaceable lithium battery

External: 2.2 V dc to 5 V dc

Power consumption

1 channel: 20.1 mA (average)

3 channels: 34.9 mA (average)

Operating temperature

-40 ˚C to + 85 ˚C

Acceleration limit

tested to 380 g

MTBF

378,000 hours (Telcordia method, SR332)

Physical Specifications

Dimensions

Internal accelerometer:68 mm x 85 mm x 33.5 mm with mounting tabs

External accelerometer (option): 32 mm x 21.5 mm x 16 mm

Weight

Node with internal accelerometer and battery: 178 grams

Node with external accelerometer, cable and battery: 252 grams

Environmental rating

IP67

Enclosure material

Aluminum and clear polycarbonate

Integration

Compatible gateways

All WSDA® base stations and gateways

Compatible sensors

LORD MicroStrain® accelerometer (external accelerometer option)

Connectors

M5 screw-on IP67 connector (external accelerometer option)

Software

SensorCloud™, SensorConnect™, Node Commander®, Windows 7 (or newer)

Software development

Open-source MicroStrain Communications Library (MSCL) with sample code available in C++,Python,and.NET formats (OS and computing platform independent): http://lord-microstrain.github.io/MSCL/

Regulatory compliance

FCC (U.S.), IC (Canada), ROHS

General
 

Sensor input channels

Differential analog, 4 channels

Single-ended analog, 3 channels

Integrated sensors

Internal temperature, 1 channel

Data storage capacity

4 M bytes (up to 2,000,000 data points, data type dependent)

Analog Input Channels

Measurement range

Differential: full-bridge, 350 Ω (factory configurable) Single-ended: 0 to 3 V dc

Accuracy

± 0.1% full scale typical

Resolution

16 bit

Anti-aliasing filter bandwidth

Single-pole Butterworth

-3 dB cutoff @ 250 Hz (factory configurable)

Bridge excitation voltage

+3 V dc, 50 mA total for all channels

(pulsed @ sample rates 16 Hz to conserve power)

Measurement gain and offset

User-selectable in software on differential channels gain values from 21 to 13074

Integrated Temperature Channel

Measurement range

-40 °C to 85 °C

Accuracy

± 2 °C (at 25 °C) typical

Resolution

16 bit

Sampling

Sampling modes

Synchronized, low duty cycle, datalogging, event-triggered

Sampling rates

Continuous sampling: 1 sample/hour to 512 Hz Periodic burst sampling: 32 Hz to 10 KHz Datalogging: 32 Hz to 10 KHz

Sample rate stability

± 3 ppm

Network capacity

Up to 2000 nodes per RF channel (and per gateway) depending on the number of active channels and sampling settings. Refer to the system bandwidth calculator: http://www.microstrain.com/configure-your-system

Synchronization between nodes

± 32 μsec

Operating Parameters

Radio frequency (RF)

transceiver carrier

2.405 to 2.470 GHz direct sequence spread spectrum over 14 channels, license free worldwide, radiated power programmable from 0 dBm (1 mW) to 16 dBm (39 mW); low power option available for use outside the U.S.- limited to 10dBm (10mW)

Range for bi-directional RF link

Outdoor/line-of-sight: 2 km (ideal) *, 800 m (typical)**

Indoor/obstructions: 50 m (typical)**

RF communication protocol

IEEE 802.15.4

Power source

Internal: 3.7 V dc, 650 mAh lithium ion rechargeable battery

External: +3.2 to +9.0 V dc

Power consumption

See power profile :

http://files.microstrain.com/V-Link-LXRS-Power-Profile.pdf

Operating temperature

-20 ˚C to + 60 ˚C (extended temperature range available with custom battery/enclosure, -40 ˚C to + 85 ˚C electronics only)

Acceleration limit

500 g standard (high g option available)

Physical Specifications

Dimensions

74 mm x 79 mm x 21 mm

Weight

141 grams

Environmental rating

Indoor use (IP65/66 enclosures available)

Enclosure material

Anodized aluminum

Integration

Compatible gateways

All WSDA® base stations and gateways

Compatible sensors

Bridge type analog sensors, 0 to 3 V dc analog sensors

Connectors

Screw terminal block

Shunt calibration

Internal shunt calibration resistor 499 KΩ, differential channels

Software

SensorCloud™, Node Commander®, Windows XP/Vista/7

Software development

Open-source MicroStrain Communications Library (MSCL) with sample code available in C++,Python,and.NET formats (OS and computing platform independent): http://lord-microstrain.github.io/MSCL/

Regulatory compliance

FCC (U.S.), IC (Canada), CE, ROHS

*Measured with antennas elevated, no obstructions, and no RF interferers.

**Actual range varies depending on conditions such as obstructions, RF interference, antenna height, & antenna orientation.

 

 

 

 

 

 

 

General

Sensor input channels

IEPE accelerometer, 1 channel

Resolution

24-bit resolution

Dynamic range

109.5 dB dynamic range

Anti-aliasing filter bandwidth

5th order low-pass Butterworth filter with programmable cutoff frequencies from 26 Hz to 33 KHz

Digital finite impulse response

(FIR) filter

100 dB in frequency band from 1/2 to 8 times the sample rate

IEPE Accelerometer Requirements

Excitation voltage

23 V dc

Excitation current

2.3 mA

Output voltage

± 5 V dc

Sampling

Sampling modes

Synchronized (periodic burst sampling only)

Sampling rates

Periodic burst sampling: 1 kHz to 104 kHz

Maximum burst periods

150 seconds @ 1 kHz; 3 seconds @ 50 kHz; 1.3 seconds @

104 kHz

Measurable signal bandwidth

1 Hz to 33 kHz

Sample rate stability

± 3 ppm

Network capacity

Up to 125 nodes per RF channel (and per gateway) depending on the number of active channels and sampling settings. Refer to the system bandwidth calculator: http://www.microstrain.com/configure-your-system

Synchronization between nodes

± 32 μsec with 10 sec beacon interval (synchronized mode)

Operating Parameters

Radio frequency (RF)

transceiver carrier

2.405 to 2.470 GHz direct sequence spread spectrum over 14 channels, license-free worldwide, radiated power programmable from 0 dBm (1 mW) to 16 dBm (39 mW); low power option available for use outside the U.S.A.- limited to 10 dBm (10 mW)

RF communication protocol

IEEE 802.15.4

Range for bi-directional RF link

70 m to 2 km line of sight with RF power setting

Power source

Internal: 3.7 V dc, 650 mAh rechargeable battery

External: 3.2 V dc to 9 V dc

Power consumption

 

1 burst /10 minutes: 2.9373 mA (10.57 mW), 1 burst/hr: 0.6957 mA (2.50 mW), 1 burst/4 hrs: 0.2875 mA (1.04 mW), 1 burst/24 hrs: 0.1738 mA (0.63 mW) (all sampling @ 10 kHz with 5 second burst duration). See battery life calculator: http://www.microstrain.com/iepe- link-lxrs-battery-life-calculator

Operating temperature

-20 ˚C to +60 ˚C (-40 ˚C to +85˚C available with external battery)

Physical Specifications

Dimensions

94 mm x 79 mm x 21 mm

Weight

114 grams

Enclosure material

Aluminum

Environmental rating

Indoor use

Integration

Compatible gateways

All WSDA® base stations and gateways

Compatible sensors

IEPE type sensors that operate within the node input specifications and have an output within ± 5 V dc (custom options available)

Connectors

10-32 coaxial (IEPE input), terminal block (future use)

Software

SensorCloud™, SensorConnect™, Node Commander®, Windows 7 (or newer)

Software development

Open-source MicroStrain Communications Library (MSCL) with sample code available in C++,Python,and.NET formats (OS and computing platform independent): http://lord-microstrain.github.io/MSCL/

Regulatory compliance

FCC (U.S.), IC (Canada), ROHS

 

General

Integrated sensors

Triaxial MEMS accelerometer, 3 channels

Internal temperature, 1 channel

Data storage capacity

2 M bytes (up to 1,000,000 data points, data type dependent)

Accelerometer Channels

Measurement range

± 2 g or ± 10 g standard

Accelerometer bandwidth

0 Hz to 500 Hz

Accuracy

10 mg

Resolution

12 bit

Anti-aliasing filter bandwidth

Single-pole Butterworth, -3 dB cutoff at 500 Hz (factory adjustable)

Integrated Temperature Channel

Measurement Range

-40 °C to 70 °C

Accuracy and resolution

± 2 °C (at 25 °C) typical , 12 bit

Sampling

Sampling modes

Synchronized, low duty cycle, datalogging

Sampling rates

Continuous sampling: 1 sample/hourto 512 Hz Periodic burst sampling: 32 Hz to 4096 Hz (1 channel) Datalogging: 32 Hz to 4096 Hz (1 channel)

Sample rate stability

± 3 ppm

Network capacity

Up to 2000 nodes per RF channel (and per gateway) depending on the number of active channels and sampling settings. Refer to the system bandwidth calculator: http://www.microstrain.com/configure-your-system

Synchronization between nodes

± 32 μsec

Operating Parameters

Radio frequency (RF)

transceiver carrier

2.405 to 2.470 GHz direct sequence spread spectrum over 14 channels, license free worldwide, radiated power programmable from 0 dBm (1 mW) to 16 dBm (39 mW); low power option available for use outside the U.S.A.- limited to 10 dBm (10 mW)

Range for bi-directional RF link

70 m to 2 km line of sight with RF power setting

RF communication protocol

IEEE 802.15.4

RF data downloading

4.5 minutes to download full memory

Power source

Internal: 3.7 V dc,220 mAh, rechargeable lithium polymer batteryExternal: 3.2 V dc to 9 V dc

Power consumption

See power profile :

http://files.microstrain.com/G-Link-LXRS-Power-Profile.pdf

Operating temperature

-20 ˚C to + 60 ˚C (extended temperature range available with custom battery/enclosure, -40 ˚C to + 85 ˚C electronics only)

Acceleration limit

500 g (high g option available)

Physical Specifications

Dimensions

58 mm x 43 mm x 21 mm with mounting tabs

Weight

40 grams

Environmental rating

Indoor use (IP65/66 enclosures available)

Enclosure material

ABS plastic

Integration

Compatible gateways

All WSDA® base stations and gateways

Software

SensorCloud™, Node Commander®, WSDA® Data

Downloader, Live Connect, Windows XP/Vista/7 compatible

Software development

Open-source MicroStrain Communications Library (MSCL) with sample code available in C++,Python,and.NET formats (OS and computing platform independent) http://lord-microstrain.github.io/MSCL/

Regulatory compliance

FCC (U.S.), IC (Canada), ROHS

 

General

Sensor input channels

RHT sensor input, 1 channel each

(temperature and humidity)

0 to 5 V dc inputs, 3 channels

Data storage capacity

2 M bytes (up to 500,000 data points)

Relative Humidity and Temperature (RHT) Sensor Input

Measurement range

0 to 100 % RH, -40 °C to 123 °C

Accuracy (RH)

± 2 % (10 to 90 % RH), ± 4 % ( 0 to 10% RH and 90 to 100% RH)

Accuracy (temperature)

± 0.3 °C typical

Resolution

12 bit

0 to 5 V DC inputs

Measurement range

0 to 5 V dc

Accuracy

0.01 % typical (absolute accuracy)

Resolution

24 bit

Sensor excitation

2 or 3 V dc (user selectable)

Sampling

Sampling modes

Synchronized, low duty cycle, datalogging

Sampling rates

Continuous sampling: 1 sample/hour to 2 Hz

Datalogging:1 sample/hour to 2 Hz

Sample rate stability

± 3 ppm

Network capacity

Up to 2000 nodes per RF channel (and per gateway) depending on the number of active channels and sampling settings. Refer to the system bandwidth calculator: http://www.microstrain.com/configure-your-system

Synchronization between nodes

± 32 μsec

Operating Parameters

Radio frequency (RF)

transceiver carrier

2.405 to 2.470 GHz direct sequence spread spectrum over 14 channels, license free worldwide, radiated power programmable from 0 dBm (1 mW) to 16 dBm (39 mW); low power option available for use outside the U.S.A.- limited to 10 dBm (10 mW)

RF communication protocol

IEEE 802.15.4

Range for bi-directional RF link

70 m to 2 km line of sight with RF power setting

Power source

Internal: size D-cell 3.6 V dc Lithium thionyl chloride batteries (included), or size D-cell 1.5 V dc alkaline batteries (user supplied); External: 0.9 V dc to 6.0 V dc

Power consumption

See power profile :http://files.microstrain.com/ENV-Link-Mini- LXRS-Power-Profile.pdf

Operating temperature

-40 ˚C to + 85 ˚C (with Lithium thionyl chloride batteries)

Physical Specifications

Dimensions

150 mm x 53 mm x 100 mm

Weight

298 grams

Environmental rating

IP67

Enclosure material

polycarbonate

Integration

Compatible gateways

All WSDA® base stations and gateways

Compatible sensors

RHT input: LORD MicroStrain® RHT sensor

0 to 5 V dc inputs: pyranometer, photosynthetic photon flux, soil moisture, and leaf wetness sensors (available from LORD MicroStrain® ), thermocouples, rain and strain gauges, anemometers, and other 0 to 5 V dc sensors

Connectors

M9 screw-on IP67 connector

Software

SensorCloud™, Node Commander®, WSDA® Data

Downloader, Live Connect, Windows XP/Vista/7 compatible

Software development kit (SDK)

Data communications protocol available with EEPROM maps and sample code (OS and computing platform independent) http://www.microstrain.com/software-development-kits-sdks

Regulatory compliance

FCC (U.S.), IC (Canada), ROHS

 

Pages

General Documentation

Technical Notes

Mechanical Drawings (uncontrolled)

Videos

General Documentation

Technical Notes

Mechanical Drawings (Uncontrolled)

Videos

General Documentation

Videos

FAQ's

Pages

Pages

Please use the form below to contact us or call 802 862 6629.