WSDA 104

Product no longer stocked – limited availability
Contact for pricing and lead time--a minimum order quantity may apply

LORD MicroStrain’s WSDA® -Base -104 -LXRS® is a USB I/O (input/output) wireless gateway for easy, reliable sensor data acquisition.

Product Highlights

  • Data acquisition gateway collects synchronized data from scalable networks of wireless sensors
  • Provides seamless communication between the wireless sensor nodes and host computer
  • Quick deployment with USB host computer interface
  • Compatible with all LORD MicroStrain® sensor nodes
Datasheet Manual Software
Where to Buy?
U.S. International OEM

Wireless Simplicity, Hardwired Reliability

High Performance

  • Node-to-node synchronization up to ±32 microseconds
  • Scalable, long range wireless sensor networks up to 2 km
  • Lossless data throughput under most operating conditions

Ease of Use

  • Easy out-of-the-box installation with data collection in minutes
  • Remotely configure nodes, acquire and view sensor data with SensorConnect
  • Data visualization through web-based SensorCloud™ portal provides quick data navigation and analysis
  • Easy integration via comprehensive SDK

Cost Effective

  • Thousands of sensors managed from a single gateway
  • Out-of-the box wireless sensing solution reduces development and deployment time.
  • Volume discounts

General

Connectivity

USB 2.0 virtual serial communication @ 921,600 bps

Sampling

Supported node sampling modes

Synchronized, low duty cycle, continuous, periodic burst, event-triggered, and datalogging

Synchronization beacon interval

1 Hz beacon provides ± 32 μsec node-to-node synchronization

Synchronization beacon stability

± 3 ppm

Network capacity

Up to 2000 nodes per RF channel (and per gateway) depending on the number of active channels and sampling settings. Refer to the system bandwidth calculator: http://www.microstrain.com/configure-your-system

Operating Parameters

Radio frequency (RF)

transceiver carrier

2.405 to 2.470 GHz direct sequence spread spectrum over 14 channels, license-free worldwide, radiated power programmable from 0 dBm (1 mW) to 16 dBm (39 mW); (low power option available for use outside the U.S.A.- limited to 10 dBm (10 mW)

RF communication protocol

IEEE 802.15.4

Range for bi-directional RF link

70 m to 2 km line of sight with RF power setting

Power source

USB port: 5 V dc standard

Power consumption

Idle: 45.7 mA; Eight active node channels operating at 256 Hz low duty cycle: 65.6 mA

Operating temperature

-40 °C to + 85 °C (electronics)

-30 °C to +70 °C (enclosure/antenna)

Physical Specifications

Dimensions

88 mm x 70 mm x 20 mm without antenna

Weight

123 grams

Enclosure material

Black anodized aluminum

Integration

Connectors

Micro-USB

Communications cable

USB standard to USB micro-B (3 foot cable included in starter kit)

Compatible sensor nodes

All LXRS® sensor nodes, all legacy 2.4 GHz nodes

Firmware

Firmware upgradeable through software interface

Software

SensorCloud™, Node Commander®, WSDA® Data

Downloader, Live Connect, Windows XP/Vista/7 compatible

Software development

Open-source MicroStrain Communications Library (MSCL) with sample code available in C++,Python,and.NET formats (OS and computing platform independent): http://lord-microstrain.github.io/MSCL/

Regulatory compliance

FCC (U.S.), IC (Canada), CE, ROHS

 

What is Multipath?

Multipath is the phenomenon whereby a radio signal arrives at a receiver’s antenna by more than one path. This occurs by the reflection, diffraction, or scattering of radio waves from atmospheric ducting, reflection from water bodies or terrestrial objects (like mountains), etc.

Does Multipath impact signal strength?

Yes, multipath propagation of radio signals causes fading of the transmitted signal, which can be indicated by fluctuations in signal strength when received by the signal receiver.

How do I mitigate Multipath?

Pe-position base station or node to mitigate possible multipath interference.
Ensure a clear path to the antenna for the strongest signal, enhancing the strength of the strongest signal AND reducing the strength of the weaker signals.

Learn More: Mutipath Propagation

The IEPE-Link™ -LXRS® accepts inputs from most IEPE sensors using the industry standard 10-32 mini-coaxial connector and 2.3 mA constant current excitation.

 

 

 

 

 

The WSDA-RGD (with internal GX3 inertial sensor) is configured to produce the following messages on startup.

GPS Data (1 Hz):

  • UTC Time
  • LLH Position
  • NED Velocity

AHRS Data (100 Hz):

  • Euler Angles

From this output the WSDA logs:

GPS (1 Hz):

  • latitude
  • longitude
  • height above ellipsoid
  • height above MSL
  • horizontal accuracy
  • vertical accuracy
  • speed

AHRS (100 Hz):

  • roll
  • pitch
  • yaw

The WSDA-RGD does not log any data until it gets a valid time, if it is set to get time from GPS only it will not log any output from the GX3 until the UTC timestamp from the GX3 is valid, even though the GX3 is producing valid AHRS data.

This data is not user configurable and is not available as a live stream through LiveConnect.

All LORD MicroStrain wireless sensor nodes, wireless base stations, and wireless sensor data aggregators are shipped from the factory with their radio frequency set to channel 15 (2.425 GHz).

This channel setting was established during 2012.

Previously all wireless products were set to channel 25 (2.475 GHz).

If you are mixing new nodes and base stations with older nodes and base stations, please be cognizant of these different channel settings.

The Node Discovery function of Node Commander will help you sort out which nodes are on what channels; Node Discovery is channel independent and allows the base station to communicate with any node, no matter what channel it is on

Sampling methods such as synchronized sampling, low duty cycle, network broadcast, etc. require that all nodes are on the same frequency so you will want to insure that you have adjusted the channels settings of the nodes to suit.

The LORD MicroStrain® WSDA-Base-101-LXRS Wireless Analog Output Base Station supports all data acquisition sessions between wireless nodes and host computers including Synchronized Sampling (both Continuous and Burst modes), Armed Datalogging, Datalogging, Streaming and Low Duty Cycle. As an integral feature, the WSDA-Base-101-LXRS has an analog output back panel that supports analog data acquisition equipment (DAQs). Up to 8 sensor channels from one or multiple wireless nodes can be fed into a DAQ with simultaneous digital feed into a PC, or into a DAQ with the PC removed (stand-alone configuration). Each channel on the back panel has a 0 to 3 volt range representing the particular sensor’s full scale output. In some environments and with some equipment, the 0 to 3 volt range is not appropriate; many types of programmable logic controllers (PLCs) and DAQs have only current loop inputs, are therefore incompatible with voltage output sensors, and require a 4 to 20 mA output range to operate. This technical note demonstrates how to convert the 0 to 3 volt output to a 4 to 20 mA output using a third party converter and assumes familiarity with the WSDA-Base-101-LXRS, LORD MicroStrain wireless nodes and Node Commander software.

Click here.

Microsoft Excel displays the timestamp contained in the wireless node data files incorrectly.  If you were to open the CSV file with Microsoft Notepad, you will see that the timestamp is shown properly.  In order to get Excel to show the human readable time, follow the below procedure:

  • Highlight all of column A (column with the timestamp)
  • Right click on highlighted region and select Format cells...
  • Select the Number Tab in the window that open and choose Custom from the Category box
  • Scroll to the bottom of the list in the Type box, find this entry: m/d/yyyy h:mm and click it
  • Add to the entry an :ss.000 so it now looks like this: m/d/yyyy h:mm:ss.000
  • Click OK

The timestamp will now be correct.

In FINITE sampling, the user sets a total number of samples to be taken which equates to a time period.  Because the sampling rate per second is known, the user can adjust the number of samples to be taken to determine how long the sampling period will be.

In CONTINUOUS sampling, the user does not set the total number of samples and therefore does not set the time of the sampling period.  By selecting CONTINUOUS sampling, the user is instructing the system to sample data until the user manually stops the sampling (via software), the power is cycled, the on-board datalogging memory is full, the battery dies, the power fails, etc.

LORD MicroStrain® Wireless Sensor Networks provide several data acquisition modes including:

  • Synchronized Sampling
  • Armed Datalogging
  • Streaming
  • Duty Cycle

See the particular wireless node for specifics.

 

Not what you're looking for? Visit our FAQ page or contact our Sales team.