The 3DM-GX3® -25-OEM is a lower cost, miniature, industrial-grade attitude heading and reference system (AHRS) with integrated magnetometers, and OEM form factor.

Product Highlights

  • High performance integrated MEMS sensor technology provide direct and computed AHRS outputs in a small package.
  • Triaxial accelerometer, gyroscope, magnetometer, and temperature sensors achieve the best combination of measurement qualities.
  • On-board processor runs a sophisticated Complimentary Filter (CF) fusion algorithm for precise attitude estimates and inertial measurements
  • Sampling rates up to 30 KHz and data output up to 1 KHz
  • Small size, lightweight packaging, and header connector interface ideal for OEM integration
Large Quantity & OEM Orders

Best in Class Performance

  • Fully calibrated, temperature compensated, and mathematically aligned to an orthogonal coordinate system for highly accurate outputs
  • Bias tracking, error estimation, threshold flags, and adaptive noise modeling allow for fine tuning to conditions in each application.

Ease of Use

  • Easy integration via comprehensive SDK
  • Common protocol with the 3DM-GX4® and 3DM-RQ1™ sensor families for easy migration

Cost Effective

  • Out-of-the box solution reduces development time.
  • Volume discounts


Integrated sensors

Triaxial accelerometer, triaxial gyroscope, triaxial magnetometer, and temperature sensors,

Data outputs

Inertial Measurement Unit (IMU) outputs: acceleration, angular rate, magnetic field , deltaTheta, deltaVelocity

Computed outputs: attitude estimates (in Euler angles, quaternion, orientation matrix),


16 bit SAR oversampled to 17 bits

Inertial Measurement Unit (IMU) Sensor Outputs





Measurement range

±5 g (standard)

±1.7±16, and ±50 g (option)

300°/sec (standard)

±50, ±600,±1200 °/sec (options)

±2.5 Gauss


±0.1 % fs

±0.03 % fs

±0.4 % fs

Bias instability

±0.04 mg



Initial bias error

±0.002 g


±0.003 Gauss

Scale factor stability

±0.05 %

±0.05 %

±0.1 %

Noise density

80 µg/Hz




Alignment error




Adjustable bandwidth

225 Hz (max)

440 Hz (max)

230 Hz (max)

IMU filtering

Digitally filtered (user adjustable) and scaled to physical input; coning and sculling integrals computed at 1 kHz

Sampling rate

30 kHz

30 kHz

7.5 kHz

IMU data output rate

1 Hz to 1000 Hz

Computed Outputs

Attitude accuracy

±0.5° roll, pitch, and heading (static, typ), ±2.0° roll, pitch, and heading (dynamic, typ)

Attitude heading range

360° about all axes

Attitude resolution

< 0.01°

Attitude repeatability

0.2° (typ)

Calculation update rate

1000 Hz

Computed data output rate

1 Hz to 500 Hz

Operating Parameters


USB 2.0, TTL (3.3 V dc, 9,600 bps to 921,600 bps, default 115,200)

Power source

+ 3.1 to + 5.5 V dc

Power consumption

80 mA at 5 V dc (USB)

Operating temperature

-40 °C to +70 °C

Mechanical shock limit

500 g

Physical Specifications


38 mm x 24 mm x 11.6 mm


11.6 grams

Regulatory compliance




Data/power output: Samtec FTSH Series



MIPMonitor, Windows XP/Vista/7/8 compatible


Protocol compatibility with 3DM-RQ1and 3DM- GX4® sensor families.

Software development kit (SDK)

MIPdata communications protocol with sample code available (OS and computing platform independent)


The input specification for PPS on the 3DM-GX3-25 standard and OEM  is LVTTL (low voltage TTL), 5 volt tolerant.

The -25 has a power regulator that will protect up to 15 volts.

Using MIP Monitor software, to reset the device to the factory defaults:

  • Establish communication as normal with the sensor.
  • Click Settings.
  • Click Load Default Settings and a message box pops up.
  • Click OK and the message box disappears.
  • Click Settings again.
  • Click Save Current Settings and a message box pops up.
  • Click OK and the message box disappears.

This process does not erase any hard and soft iron calibration that may be on the device.

The Hard and Soft Iron Cal software we provide must be used to do that.

The main difference between single byte (SB) and MIP is as follows:

  • All MIP commands and data have a header and checksum.  SB only has a header (the echo of the command byte) and a checksum on the replies.  This means that the programmer has to create a header and calculate the checksum for a command before s/he sends the command.  This was not necessary with SB.
  • MIP setup and control commands (like start and stop continuous mode) send an ACK/NACK field with a reply.  SB does not.  The ACK/NACK field has an error code that can be used to confirm that a command was accepted.
  • MIP packets can contain multiple command and data fields.  SB commands and data only have one fixed field.

The reason we created MIP was the higher reliability for communications and control, plus the ability to have custom data messages.  SB was prone to phantom commands in a noisy environment.  In addition, SB had a limited number of data combinations available.

To move code from Single Byte to MIP with simple applications is fairly painless if you follow some guidelines.

  • You can “prebuild” all your setup and control commands and make them constants in your code.   You can plug the prebuilt packet constants into the same part of the code that you previously used to send a single byte command (In essence, you are sending a “multi-byte” command instead of a single byte command).  We have a “packet builder” tool in the MIP Monitor that will build the packet for you.  You can try out the command and then copy the packet and paste it directly into your code as a string constant.
  • When you design the MIP data message, make sure all the “data rate decimation” values are the same.  This will make all the data packets identical, which makes finding data in the packet similar to finding data in a SB data message (by using fixed offsets).


From time to time, MicroStrain releases firmware upgrades for its 3DM-GX3® inertial sensors. These firmware upgrades represent operating improvements, new functions, etc. In most cases, the user may download these upgrades and perform the upgrade using a simple step-by-step process. This technical note describes which firmware upgrades may be accomplished by the user and which firmware upgrades must be done at the factory. Familiarity with 3DM-GX3® operation is assumed. The upgrade procedure employs a Microsoft Windows computer and the Microsoft HyperTerminal utility.

Click here.



Many inertial applications incorporate dataloggers. The datalogger can take many forms: hardware or software, analog or digital, simple or complex, and/or combinations of all. For our purposes, let’s work through a simple-digital-software datalogger. In this case, datalogger software is installed on a computer. The inertial sensor is connected to the computer via an RS-232 communication interface. The inertial sensor is pre-programmed to automatically send data when powered. The computer receives the stream of data and the datalogger software continuously records the stream to a data file.

Click here.


The LORD MicroStrain 3DM-GX3 inertial sensor family allows the user to pre-program the inertial sensor so that it continuously outputs specific data packets at specific sampling rates each time it is powered on. This functionality facilitates integration of the inertial sensor with other equipment and systems. For example, connection of the 3DM-GX3 inertial sensor to a datalogger becomes quite easy. The user pre-programs the 3DM-GX3 data output settings on his desktop, connects the 3DM-GX3® to the datalogger’s RS-232 port, powers the 3DM-GX3, and the datalogger records the inertial data. This technical note assumes some familiarity with your particular 3DM-GX3 inertial sensor and its accompanying MIP Monitor (Windows-based) software.

Click here.

In order to return any LORD MicroStrain® product either for repair or return, you must contact us for a Return Merchandise Authorization number (RMA). If you purchased directly from LORD MicroStrain® in the United States, please contact your Sales or Support Engineer to obtain an RMA.  If you purchased directly from a LORD MicroStrain® distributor, please contact your distributor to obtain an RMA.

If you are located in the United States, LORD MicroStrain® supplies you directly.  If you are in located in another country, LORD MicroStrain® products are available exclusively from LORD MicroStrain® distributors.  Please use this locator to determine your distributor:

To enable customers to try our standard products risk free, LORD MicroStrain® offers a 30 day return on the purchase of a starter kit. In order to take advantage of this offer, a purchase order or payment for the starter kit is required when the order is placed. 30 day trial details may be found at:

LORD MicroStrain® Support Engineers are always available to support you in any way we can by phone, email, SKYPE or Live Chat from our home page.  Contact details may be found at:

LORD MicroStrain® insures all products shipments to their full value unless the customer specifically states a different method.

LORD MicroStrain® warrants its standard products to be free from defective material and workmanship for a period of one (1) year from the original date of purchase.  Warranty details may be found at:

The term ‘static’ accuracy refers to measurements made when the inertial unit is not moving and the on-board orientation algorithm has recovered from any sensor over-ranging.

The term ‘dynamic’ accuracy refers to measurements made while the inertial unit is moving and not exceeding the measurement range of the individual on-board sensors (accelerometers, gyroscopes, magnetometers).

The 3DM, 3DM-DH and FAS-A are designed to measure static rotations.

The 3DM-GX3 family is designed to measure both static and dynamic rotations.

Yes.  We have had good success with several types of off-the-shelf USB to serial port adaptors, such as those from IOGear and Keyspan, which may be purchased through any of the electronics products distributors.


The standard unit uses a specialized Ulti-Mate brand micro-DB9.  This technical note contains more details:

The OEM unit uses a Samtec FTSH-105-01-F-D-K.  This technical note contains more details:

LORD MicroStrain® suggests that you purchase additional connectors with your order.

The 3DM-GX3 USB and RS-232 communication interfaces are built to satisfy the standard USB-IF and EIA specifications.  LORD MicroStrain® provides 6 foot cables as standard.  Many techniques can be used to extend the length of the communication interfaces including powered USB hubs, USB boosters, RS-232 extenders, etc.

The 3DM-GX3 is calibrated at the factory.  The user is also provided with Hard and Soft Iron Calibration software to field calibrate the GX3 in situ.  This video further describes the function:

Important note: Hard and soft iron calibration is not required for the 3DM-GX3-15 and the 3DM-GX315 OEM.  These units do not contain magnetometers.

From time to time the 3DM-GX3 may need recalibration. For example, as a result of coming in contact with magnetic influences (magnets, motors, etc.), residual magnetism may be picked up by the on-board components which will alter the calibration.  Another example: the 3DM-GX3 receives a severe shock, slightly altering the position of the circuit boards in relation to the enclosure, again altering the calibration.  In these cases the unit should be returned to the factory for recalibration.

Yes. Any number of units can be operated by a host at the same time. Several considerations surround this implementation (primarily computing power) and we suggest that you discuss your requirements with LORD MicroStrain® sales or a support engineer.


For the standard units, here is a link to a detailed technical note:

For the OEM units, here is a link to a detailed technical note:





Yes, there are no limitations.  However, if a user requires a ‘zeroing’ of the axes, this must be done in the user’s external application.  Good practice dictates that the orientation matrix be used to calculate such zeroing.  Please also be aware of the mathematical singularity in Euler angles.

The user should be aware that the Euler angle formulation in general contains a mathematical singularity at Pitch = +90 or –90 degrees. In practice, poor numerical results will be present if the Pitch angle exceeds +/-70 degrees. In applications where the Pitch angle cannot be guaranteed to exceed these values, it is recommended that the orientation matrix output be utilized instead.

Yes. The sampling rates are user adjustable.

For the -15 and -25, the user may set the sampling rate at up to 1000 Hz depending on the data quantity.

For the -35, the user may set the AHRS sampling rate up to 1000 Hz depending on the data quantity and the GPS sampling rate up to 4 Hz.

For the -45, the user may set the Navigation sampling rate up to 100 Hz.

The baud rate is user adjustable and may be set to 9600, 19200, 115200 (default), 230400, 460800, and 921600.

Yes.  The presence of strong magnetic fields or large magnetic materials will distort Earth’s weak local magnetic field and this will influence the on-board magnetometers.  A hard and soft iron calibration software utility is provided to field calibrate the 3DM-GX3-25, 3DM-GX3-25 OEM, 3DM-GX3-35 and 3DM-GX3-45.

The 3DM-GX3-15 and 3DM-GX3-15 OEM do not contain magnetometers and are not affected by hard and/or soft iron interference.

The following orientation outputs formats are available:

  • Acceleration
  • Angular Rate
  • Magnetic Vector
  • DeltaAngle and DeltaVelocity
  • Orientation Matrix
  • Quaternion
  • Euler Angles (pitch, roll and yaw)
  • ...and more.

A detailed description of these outputs can be found in the Data Communications Protocol manual of each product.



The standard units support both USB and RS-232 interface.

The OEM units support both USB and TTL.

Yes. We provide a complete data communications protocol manual which describes in detail each and every command and response that is available with the device.  Applications may be developed in any programming environment (C, VB, LabVIEW, Linux, Matlab, etc.) which supports serial communication.

We provide a general application for Microsoft XP/Vista/Win 7 operating systems that configures, reads, displays and saves data generated by the device.  This application (MIP Monitor) supports both the USB and RS-232 communication interfaces.

When you initially purchase a 3DM-GX3, a starter kit (SK) provides you with everything you need to get started! SKs include a 3DM-GX3 module, communication and power cables, software, manuals and GPS antenna if applicable.  In subsequent purchases you may only require additional modules or other individual components. Several communication interfaces are available creating several starter kit variations.

Static accuracy

±0.5° pitch, roll, heading typical for static test conditions

Dynamic accuracy

±2.0° pitch, roll, heading for dynamic (cyclic) test conditions and for arbitrary angles


Not what you're looking for? Visit our FAQ page or contact our Sales team.