The TC-Link® -6CH -LXRS® is a specialized node designed for synchronous, lossless data acquisition from up to six standard thermocouples.

Product Highlights

  • Six standard mini thermocouple inputs, an embedded cold junction temperature compensation sensor, and optional integrated relative humidity sensor
  • On-board linearization algorithms are software programmable to support a wide range of thermocouple types, including J, K, N, R, S, T, E, and B
  • High resolution data with 24-bit A/D converter
  • Simultaneously transmit real-time data and log to memory.
  • IP65/66 environmental enclosures available
Datasheet Software
Large Quantity & OEM Orders

Wireless Simplicity, Hardwired Reliability

High Performance

  • Node-to-node synchronization up to ±32 microseconds
  • Support for hundreds of simultaneous sampling wireless sensor nodes
  • Lossless data throughput under most operating conditions
  • Extended wireless communication range to 2km

Ease of Use

  • Rapid deployment with wireless framework
  • Standard miniature thermocouple blade connectors
  • Remotely configure nodes, acquire and view sensor data with Node Commander®.
  • Easy integration via comprehensive SDK

Cost Effective

  • Reduction of costs associated with wiring
  • Low-cost per channel with six thermocouples per node
  • Volume discounts

General

Sensor input channels

Thermocouple input, 6 channels

Integrated sensors

Temperature CJC, 1 channel

Relative humidity (optional), 1 channel

Data storage capacity

2 Megabytes (up to 500,000 data points)

Thermocouple Input

Measurement range

-210 °C to 1820 °C (depending on the thermocouple type)

Accuracy

± 0.1 % of full scale or ± 2 °C, whichever is greater

(does not include error from sensor or wire)

Resolution

0.0625 °C, 24 bit

Repeatability

± 0.1 °C (does not include error from sensor or wire)

Integrated Temperature Cold Junction Compensation (CJC) Channel

Compensation range

-40 °C to 85 °C

Accuracy and resolution

± 0.5 °C (from 0 to 70 °C), 12 bit resolution

Integrated Relative Humidity Channel (optional)

Measurement range

0 to 100 %

Accuracy

± 2 % (10 to 90 % RH), ± 4 % ( 0 to 10% RH and 90 to 100% RH)

Repeatability

± 0.1 %

Sampling

Sampling modes

Synchronized, low duty cycle, datalogging

Sampling rates

Continuous sampling: 1 sample/hour to 8 Hz

Datalogging: 1 sample/hour to 8 Hz

Sample rate stability

± 3 ppm

Network capacity

Up to 2000 nodes per RF channel (and per gateway) depending on the number of active channels and sampling settings. Refer to the system bandwidth calculator: http://www.microstrain.com/configure-your-system

Synchronization between nodes

± 32 μsec

Operating Parameters

Radio frequency (RF)

transceiver carrier

2.405 to 2.470 GHz direct sequence spread spectrum over 14 channels, license free worldwide, radiated power programmable from 0 dBm (1 mW) to 16 dBm (39 mW); low power option available for use outside the U.S.- limited to 10dBm (10mW)

Range for bi-directional RF link

70 m to 2 km line of sight with RF power setting

RF communication protocol

IEEE 802.15.4

Power source

Embedded internal: 3.7 V dc, 650 mAh rechargeable Li-poly battery

Replaceable internal (not included): 3.6 V dc type AA Lithium-thionyl chloride (LiSOCI2)

External: 3.2 V dc to 9 V dc

Power consumption

See power profile : http://files.microstrain.com/TC-Link-6CH- LXRS-Power-Profile-1.pdf

Operating temperature

-20 ˚C to + 60 ˚C (extended temperature range available with custom battery/enclosure, -40 ˚C to + 85 ˚C electronics only)

Acceleration limit

500 g standard (high g option available)

MTBF 1,500,000 hours (Telcordia method, SR332)

Physical Specifications

Dimensions

129 mm x 73 mm x 28 mm excluding switch

Weight

151 grams

Enclosure material

ABS plastic

Environmental rating

Indoor use (IP65/66 enclosures available)

Integration

Compatible gateways

All WSDA® base stations and gateways

Compatible sensors

Type J, K, N, R, S, T, E and B thermocouples

Connectors

Type-1 standard mini (SM) connectors for flat pin thermocouples

Software

SensorCloud™, SensorConnect™, Node Commander®, Windows 7 (or newer)

Software development

Open-source MicroStrain Communications Library (MSCL) with sample code available in C++,Python,and.NET formats (OS and computing platform independent): http://lord-microstrain.github.io/MSCL/

Regulatory compliance

FCC (U.S.), IC (Canada), ROHS

 

In general 802.15.4 and WiFi (802.11) coexsist without much interference to either type of signal.  However, physical placement of wireless routers and WSDA -base stations may require the selection of "prefered" channels.   There are only two (2) 802.15.4 channels where WiFi DOESN’T share the same frequency, 15 and 20.

Typically, Wifi APs default to channel 6.

 

*note: channel 25 and 26 are not available with current Lord Microstrain wireless technology

The % bandwidth has to do with how many nodes/channels you can use at one time.  When setting up a Synchronized Sampling network, Node Commander will interrogate each node and assign transmission slots for them to send data to the base station.  This is designed to keep the nodes from broadcasting at the same time and causing data loss.  The more channels, and higher sample rate of a node will require more transmission slots, thus higher % of available bandwidth used.

The most common cause of this issue is that the customer connects the WSDA directly to the PC via the ethernet cable without setting the WSDA -1000 up for Static IP first.  If you refer to page 3 of the quick start guide http://files.microstrain.com/WSDA-1500_QSG_(8501-0057).pdf

To connect to the gateway Control Panel through Live Connect™ an initial connection to a DHCP enabled network is required.

1. Connect the host computer and gateway to the DHCP network, and apply power to the gateway.

Verify the gateway status indicator shows that it is on and has completed the boot up process.

 

This means that the WSDA and the computer needs to be connected to a device (like a router) that will assign an IP address to it.  Once this is done the user will be able to log into the WSDA web control panel (using the router assigned IP), and change the network mode to Static IP in the configuration screen.  They would then need to change the network card of the computer to a complementing Static IP.  After this is done the user should be able directly connect the WSDA to a computer.

Excel displays our time stamp incorrectly.  If you were to open the data file in Notepad you would see the correct time format.  To correct the data in Excel, Highlight all of column A, right click on the highlighted region and select Format Cells.  Under the Number tab select Custom, Scroll to the bottom of the list that appears and select “m/d/yyyy h:mm”.  You will need to add “:ss.000” to the end of this, so it looks like this “m/d/yyyy h:mm:ss.000” .  Setting the cells to this will give you the highest resolution that Excel can show.

We use Universal Coordinated Time (UTC) to collect data on all of our devices.  There is no provision to set the time to a local time zone. 

In Node Commander software, on the analog pairing screen, there is a check box for "Float". What is the function of this check box?

 

 

 

If the node is configured to send data to the base station in floating point mode, you need to enable this checkbox and set the 0-3 volt scaling.

 

The WSDA-RGD (with internal GX3 inertial sensor) is configured to produce the following messages on startup.

GPS Data (1 Hz):

  • UTC Time
  • LLH Position
  • NED Velocity

AHRS Data (100 Hz):

  • Euler Angles

From this output the WSDA logs:

GPS (1 Hz):

  • latitude
  • longitude
  • height above ellipsoid
  • height above MSL
  • horizontal accuracy
  • vertical accuracy
  • speed

AHRS (100 Hz):

  • roll
  • pitch
  • yaw

The WSDA-RGD does not log any data until it gets a valid time, if it is set to get time from GPS only it will not log any output from the GX3 until the UTC timestamp from the GX3 is valid, even though the GX3 is producing valid AHRS data.

This data is not user configurable and is not available as a live stream through LiveConnect.

As a general rule, you can calculate the battery life of a wireless node by dividing the amp hours of charge on the battery by the amps consumed during sampling.

Using the V-Link-LXRS as an example, we read in the data sheet (http://files.microstrain.com/V-Link_LXRS_datasheet.pdf) that the internal rechargeable battery has a nominal charge of 650 mAh (milliamp hours).  We next go to the V-Link-LXRS power profile (http://files.microstrain.com/V-Link-LXRS-Power-Profile.pdf) and we read that the V-Link-LXRS consumes 12.816 mA when sampling a 350 ohm strain gauge on 1 channel at 128 Hz.  By dividing 650 mAh by 12.816 mA, we find that the battery will last approximately 50 hours before needing recharge.

Yes!

However, new LXRS functions such as synchronized sampling, beaconing, etc. will not be available for your older node.

 

All LORD MicroStrain wireless sensor nodes, wireless base stations, and wireless sensor data aggregators are shipped from the factory with their radio frequency set to channel 15 (2.425 GHz).

This channel setting was established during 2012.

Previously all wireless products were set to channel 25 (2.475 GHz).

With the introduction of our LXRS radio technology, and its accompanying increase in radio strength and signal distance, the channel 25 radio frequency (2.475 GHz) and the channel 26 radio frequency (2.480 GHz) created harmonics on the edge of the Zigbee band that precludes their use.

All wireless products, both older and new, continue to support 14 channels running from channel 11 to channel 24.

All LORD MicroStrain wireless sensor nodes, wireless base stations, and wireless sensor data aggregators are shipped from the factory with their radio frequency set to channel 15 (2.425 GHz).

This channel setting was established during 2012.

Previously all wireless products were set to channel 25 (2.475 GHz).

With the introduction of our LXRS radio technology, and its accompanying increase in radio strength and signal distance, the channel 25 radio frequency (2.475 GHz) and the channel 26 radio frequency (2.480 GHz) created harmonics on the edge of the Zigbee band that precludes their use.

All wireless products, both older and new, continue to support 14 channels running from channel 11 to channel 24.

 

 

 

All LORD MicroStrain wireless sensor nodes, wireless base stations, and wireless sensor data aggregators are shipped from the factory with their radio frequency set to channel 15 (2.425 GHz).

This channel setting was established during 2012.

Previously all wireless products were set to channel 25 (2.475 GHz).

With the introduction of our LXRS radio technology, and its accompanying increase in radio strength and signal distance, the channel 25 radio frequency (2.475 GHz) and the channel 26 radio frequency (2.480 GHz) created harmonics on the edge of the Zigbee band that precludes their use.

All wireless products, both older and new, continue to support 14 channels running from channel 11 to channel 24.

All LORD MicroStrain wireless sensor nodes, wireless base stations, and wireless sensor data aggregators are shipped from the factory with their radio frequency set to channel 15 (2.425 GHz).

This channel setting was established during 2012.

Previously all wireless products were set to channel 25 (2.475 GHz).

If you are mixing new nodes and base stations with older nodes and base stations, please be cognizant of these different channel settings.

The Node Discovery function of Node Commander will help you sort out which nodes are on what channels; Node Discovery is channel independent and allows the base station to communicate with any node, no matter what channel it is on

Sampling methods such as synchronized sampling, low duty cycle, network broadcast, etc. require that all nodes are on the same frequency so you will want to insure that you have adjusted the channels settings of the nodes to suit.

All LORD MicroStrain wireless sensor nodes, wireless base stations, and wireless sensor data aggregators are shipped from the factory with their radio frequency set to channel 15 (2.425 GHz).

This channel setting was established during 2012.

Previously all wireless products were set to channel 25 (2.475 GHz).

If you are mixing new nodes and base stations with older nodes and base stations, please be cognizant of these different channel settings.

The Node Discovery function of Node Commander will help you sort out which nodes are on what channels; Node Discovery is channel independent and allows the base station to communicate with any node, no matter what channel it is on

Sampling methods such as synchronized sampling, low duty cycle, network broadcast, etc. require that all nodes are on the same frequency so you will want to insure that you have adjusted the channels settings of the nodes to suit.

All LORD MicroStrain wireless sensor nodes, wireless base stations, and wireless sensor data aggregators are shipped from the factory with their radio frequency set to channel 15 (2.425 GHz).

This channel setting was established during 2012.

Previously all wireless products were set to channel 25 (2.475 GHz).

If you are mixing new nodes and base stations with older nodes and base stations, please be cognizant of these different channel settings.

The Node Discovery function of Node Commander will help you sort out which nodes are on what channels; Node Discovery is channel independent and allows the base station to communicate with any node, no matter what channel it is on

Sampling methods such as synchronized sampling, low duty cycle, network broadcast, etc. require that all nodes are on the same frequency so you will want to insure that you have adjusted the channels settings of the nodes to suit.

In order to return any LORD MicroStrain® product either for repair or return, you must contact us for a Return Merchandise Authorization number (RMA). If you purchased directly from LORD MicroStrain® in the United States, please contact your Sales or Support Engineer to obtain an RMA.  If you purchased directly from a LORD MicroStrain® distributor, please contact your distributor to obtain an RMA.

To enable customers to try our standard products risk free, LORD MicroStrain® offers a 30 day return on the purchase of a starter kit. In order to take advantage of this offer, a purchase order or payment for the starter kit is required when the order is placed. 30 day trial details may be found at: http://www.microstrain.com/support/warranty

LORD MicroStrain® insures all products shipments to their full value unless the customer specifically states a different method.

The wireless node's effective download rate is ~9.2 kBps, or 73.6 kbps.  In perfect wireless conditions, a node's full 2MB memory can be downloaded in approximately 3.7 minutes.  While 250 kbps is the radio transmission rate, there are others variables that factor into the effective download rate including memory read time, packet overhead, radio acknowledgments, and base station to PC communication.   

All software provided by MicroStrain saves data files in CSV (comma separated value) format.  The CSV file is readily importable into any third party analysis program.

The wireless nodes, including circuit boards, antenna, internal battery and enclosure, can withstand shock loads up to 500g. LORD MicroStrain® can provide customization of the nodes by using high-G crystals, potting and non-masted antennas to withstand greater shock loads.

The wireless nodes all have 2 Mbytes of datalogging memory.  This 2 Mbytes is organized into 8,191 ‘pages’ of memory, each page holds 132 data points.  The maximum number of data points that can be held in memory can be calculated as follows: 8,191 pages x 132 data points/page = 1,081,212 total data points.

Now the question arises, ‘how long can a node datalog before its memory is full?’. The answer is that it varies depending on how many channels are being sampled and what sampling rate has been set. Here are two examples:

Let’s set a V-Link-LXRS so that channel 1 is active with a datalogging sampling rate of 2048 samples per second and we launch continuous datalogging.  Our calculation would be:

  • 1 channel x 2,048 samples per second = 2,048 data points per second
  • 1,081,212 data points / 2,048 data points per second = 527 seconds
  • 527 seconds / 60 seconds per minute = ~9 minutes to fill the memory

Let’s set a G-Link-LXRS so that channels 1, 2 and 3 are active with a datalogging sampling rate of 32 samples per second and we launch continuous datalogging.  Our calculation would be:

  • 3 channels x 32 samples per second = 96 data points per second
  • 1,081,212 data points / 96 data points per second = 11,262 seconds
  • 11,262 seconds / 60 seconds per minute = ~187 minutes to fill the memory

The nodes contain an internal high capacity rechargeable battery.  The nodes are provided with an external power supply which is used to recharge these batteries.  The battery life of the internal battery is fully dependent on the data acquisition mode.  High speed streaming will consume the battery in hours while low duty cycling can operate months and months if a low sample rate is set.  The nodes may also be powered externally by an external battery or power supply.

The gateways (base stations and WSDA-1000) and the wireless nodes employ radios with these general specifications (see the individual product data sheet for any variations):

Radio frequency (RF) transceiver carrier 2.4 GHz direct sequence spread spectrum, license free worldwide (2.405 to 2.480 GHz) – 16 channels, radiated power programmable from 0 dBm (1 mW) to 16 dBm (39 mW); European models limited to 10 dBm (10 mW)
RF data packet standard IEEE 802.15.4, open communication architecture
RF data downloading 8 minutes to download full memory
Range for bi-directional RF link programmable communication range from 70 meters to 2 kilometers

 

 

 

 

In FINITE sampling, the user sets a total number of samples to be taken which equates to a time period.  Because the sampling rate per second is known, the user can adjust the number of samples to be taken to determine how long the sampling period will be.

In CONTINUOUS sampling, the user does not set the total number of samples and therefore does not set the time of the sampling period.  By selecting CONTINUOUS sampling, the user is instructing the system to sample data until the user manually stops the sampling (via software), the power is cycled, the on-board datalogging memory is full, the battery dies, the power fails, etc.

Not what you're looking for? Visit our FAQ page or contact our Sales team.