Product no longer stocked – limited availability
Contact for pricing and lead time--a minimum order quantity may apply

Pages

The LORD Sensing 3DM-GX5 family of high-performance, industrial-gradeinertial sensors provides a wide range of triaxial inertial measurements and computed attitude and navigation solutions.

In all models, the Inertial Measurement Unit (IMU) includes direct measurement of acceleration and angular rate, and are fully temperature-compensated and calibrated over the operating temperature. The use of Micro- Electro- Mechanical System (MEMS) technology allows for highly accurate, small, lightweight devices.

The  LORD Sensing  MIP Monitor software can be used for device configuration, live data monitoring, and recording. Alternatively,  the MIP Data Communications Protocol is available for development of custom interfaces and easy OEM integration.

Product Highlights

  • Triaxial accelerometer, gyroscope, temperature sensors achieve the optimal combination of measurement qualities
  • Smallest, lightest, highest performance IMU in its class
Datasheet Manual
Large Quantity & OEM Orders

The LORD Sensing 3DM-GX5 family of high-performance, industrial-grade inertial sensors provides a wide range of triaxial inertial measurements and computed attitude and navigation solutions.

In all models, the Inertial Measurement Unit (IMU) includes direct measurement of acceleration and angular rate. The computed outputs vary between models and can include pitch, roll, yaw, a complete attitude and heading reference solution (AHRS), or a complete position, velocity and attitude solution (PVA), as well as integrated GNSS outputs. All sensors are fully temperature-compensated and calibrated over the operating temperature. The use of Micro-Electro-Mechanical System (MEMS) technology allows for highly accurate, small, light-weight devices.

The LORD Sensing MIP Monitor  software can be used for device configuration, live data monitoring, and recording. Alternatively, the  MIP Data Communications Protocol is available for development of custom interfaces and easy OEM integration.

Product Highlights

  • High-performance integrated multi-constellation GNSS receiver and advanced MEMS sensor technology provide direct inertial measurements, and computed attitude and heading outputs in a small package
  • Triaxial accelerometer, gyroscope, magnetometer, temperature sensors, and a pressure altimeter achieve the optimal combination of measurement qualities
  • Economical combination of AHRS and GNSS outputs for use in customer supplied Kalman Filters
Datasheet Manual
Large Quantity & OEM Orders

The LORD Sensing 3DM-CV5 family of lower cost miniature industrial-grade board-level inertial sensors provides a wide range of triaxial inertial measurements and computed attitude and navigation solutions.

In all models, the Inertial Measurement Unit (IMU) includes direct measurement of acceleration and angular rate. In models that include computed outputs, sensor measurements are processed through an auto-adaptive estimation filter algorithm to produce high accuracy computed outputs under dynamic conditions. Compensation options include automatic compensation for magnetic anomalies, gyro and accelerometer noise, and noise effects. The computed outputs vary between models and can include pitch, roll, yaw, a complete attitude and heading reference solution (AHRS), or a complete position, as well as integrated GNSS outputs. All sensors are fully temperature-compensated and calibrated over the operating temperature. The use of Micro-Electro-Mechanical System (MEMS) technology allows for highly accurate, small, light-weight devices.

The LORD Sensing MIP Monitor  software can be used for device configuration, live data monitoring, and recording. Alternatively, the  MIP Data Communications Protocol is available for development of custom interfaces and easy OEM integration.

Product Highlights

  • Triaxial accelerometer, gyroscope, magnetometer, and temperature sensors achieve the optimal combination of measurement qualities
  • Dual on-board processors run a new Auto-Adaptive Extended Kalman Filter (EKF) for outstanding dynamic attitude estimates
Datasheet Manual
Large Quantity & OEM Orders

The LORD Sensing-MicroStrain 3DM-CV5 family of lower cost miniature industrial-grade board-level inertial sensors provides a wide range of triaxial inertial measurements and computed attitude and navigation solutions.

In all models, the Inertial Measurement Unit (IMU) includes direct measurement of acceleration and angular rate. In models that include computed outputs, sensor measurements are for each miniature vertical reference unit and are processed through an auto-adaptive estimation filter algorithm to produce high accuracy computed outputs under dynamic conditions. Compensation options include automatic compensation for magnetic anomalies, gyro and accelerometer noise, and noise effects.

Datasheet Manual
Large Quantity & OEM Orders

The LORD Sensing 3DM-CV5 family of lower cost miniature industrial-grade board-level inertial sensors provides a wide range of triaxial inertial measurements and computed attitude and navigation solutions.

The  LORD Sensing  MIP Monitor software can be used for device configuration, live data monitoring, and recording. Alternatively,  the MIP Data Communications Protocol is available for development of custom interfaces and easy OEM integration.

The LORD Sensing-MicroStrain miniature inertial measurement units each include MIP monitor software that can be used for device configuration, live data monitoring, and recording. Alternatively, the MIP data communications protocol is available for development of custom interfaces and easy OEM integration.

Product Highlights

  • Triaxial accelerometer, gyroscope, and temperature sensors achieve the optimal combination of measurement qualities for each low cost inertial measurement
  • Smallest, lightest, highest performance IMU in its class

 

Datasheet Manual Software
Large Quantity & OEM Orders

The LORD Sensing 3DM-GX5 family of high-performance industrial grade inertial sensors provides a wide range of triaxial inertial measurements and computed attitude and navigation solutions. In all models, the Inertial Measurement Unit (IMU) includes direct measurement of acceleration and angular rate. All sensors are fully temperature compensated and calibrated over the operating temperature. The use of Micro- Electro- Mechanical System (MEMS) technology allows for highly accurate, small, lightweight devices. The LORD Sensing MIP Monitor software can be used for device configuration, live data monitoring, and recording. Alternatively, the MIP Data Communications Protocol is available for development of custom interfaces and easy OEM integration.

Datasheet Manual
Large Quantity & OEM Orders

The LORD Sensing 3DM-GX5 family of high-performance industrial grade inertial sensors provides a wide range of triaxial inertial measurements and computed attitude and navigation solutions.

The  3DM-GX5-25 is the smallest and lightest industrial AHRS with an Adaptive Kalman Filter available. It features a triaxial accelerometer, gyroscope, magnetometer, and temperature sensors to achieve the optimum combination of measurement qualities. Additionally, the dual on-board processors run a new Auto-Adaptive Extended Kalman Filter (EKF) for outstanding dynamic attitude estimates, making it ideal for a wide range of applications, including platform stabilization and vehicle health and usage monitoring.

The LORD Sensing MIP Monitor software can be used for device configuration, live data monitoring, and recording. Alternatively, the MIP Data Communications Protocol is available for development of custom interfaces and easy OEM integration.

Datasheet Manual
Large Quantity & OEM Orders

The LORD Sensing 3DM-GX5® family of high-performance industrial grade inertial sensors provides a wide range of triaxial inertial measurements and computed attitude and navigation solutions. The 3DM-GX5-45 all-in-one navigation solution features a high performance integrated multi-constellation GNSS receiver utilizing the GPS, GLONASS, BeiDou, and Galileo satellite constellations. Sensor measurements are fully calibrated, temperature-compensated, and mathematically-aligned to an orthogonal coordinate system for highly accurate outputs. The auto-adaptive estimation filter algorithm produces highly accurate computed outputs under dynamic conditions. Computed outputs include pitch, roll, yaw, heading, position, velocity, and GNSS outputs- making it a complete GNSS/INS (GNSS Aided Inertial Navigation System) solution. The use of Micro-Electro-Mechanical System (MEMS) technology provides a highly accurate, small, light-weight device. The LORD Sensing MIP Monitor software can be used for device configuration, live data monitoring, and recording. Alternatively, the MIP Data Communications Protocol is available for development of custom interfaces and easy OEM integration.

Datasheet Manual Software
Large Quantity & OEM Orders

The 3DM-GQ4-45 is a compact, tactical-grade all-in-one navigation solution with integrated GNSS and magnetometers, high noise immunity, and exceptional performance.

Product Highlights

High performance integrated multi-constellation GNSS receiver and MEMS sensor technology provide direct and computed PVA outputs in a small package

  • Triaxial accelerometer, gyroscope, magnetometer, temperature sensors, and a pressure altimeter achieve the best combination of measurement qualities
  • Dual on-board processors run a sophisticated Extended Kalman Filter (EKF) for excellent position, velocity, and attitude estimates
  • Improved position outputs with concurrent tracking of up to two GNSS constellations (GPS/QZSS, GLONASS, BeiDou)
Datasheet Manual
Large Quantity & OEM Orders

The 3DM-GX3® -25-OEM is a lower cost, miniature, industrial-grade attitude heading and reference system (AHRS) with integrated magnetometers, and OEM form factor.

Product Highlights

  • High performance integrated MEMS sensor technology provide direct and computed AHRS outputs in a small package.
  • Triaxial accelerometer, gyroscope, magnetometer, and temperature sensors achieve the best combination of measurement qualities.
  • On-board processor runs a sophisticated Complimentary Filter (CF) fusion algorithm for precise attitude estimates and inertial measurements
  • Sampling rates up to 30 KHz and data output up to 1 KHz
  • Small size, lightweight packaging, and header connector interface ideal for OEM integration
Datasheet
Large Quantity & OEM Orders

Pages

  • List Price: $1,095.00
    List Price: $2,595.00
    List Price: $645.00
    List Price: $495.00
    List Price: $445.00
    List Price: $1,195.00
    List Price: $1,495.00
    List Price: $2,895.00
    List Price: $4,795.00

    Pages

Best in Class Performance

  • Fully calibrated, temperature-compensated, and mathematically-aligned to an orthogonal coordinate system for highly accurate outputs
  • High-performance, low-drift gyros with noise density of 0.005°/sec/√Hz and VRE of 0.001°/s/g2RMS
  • Accelerometer noise as low as 25 ug/√Hz

Ease of Use

  • Easy integration via comprehensive and fully backwards-compatible communication protocol
  • Robust, forward compatible MIP packet protocol

Cost Effective

  • Out-of-the box solution reduces development time
  • Volume discounts
Best in Class Performance
  • Fully calibrated, temperature-compensated, and mathematically-aligned to an orthogonal coordinate system for highly accurate outputs
  • High-performance, low-drift gyros with noise density of 0.005°/sec/√Hz and VRE of 0.001°/s/g2RMS
  • Accelerometer noise as low as 25 ug/√Hz

Ease of Use

  • Easy integration via comprehensive and fully backwards-compatible communication protocol

Cost Effective

  • Out-of-the box solution reduces development time
  • Volume discounts

Best in Class Performance

  • Bias tracking, error estimation, threshold flags, and adaptive noise modeling allow for fine tuning to conditions in each application
  • Smallest and lightest industrial AHRS with Adaptive Kalman Filter available
  • High-performance, low-cost solution
  • Direct PCB mount or chassis mount with ribbon cable
  • Precision mounting alignment features

Ease of Use

  • User-defined sensor-to-vehicle frame transformation
  • Easy integration via comprehensive and fully backwards-compatible communication protocol
  • Common protocol between 3DM-GX3, GX4, RQ1, GQ4, GX5, and CV5

Cost Effective

  • Out-of-the box solution reduces development time
  • Volume discounts

Features for Our Lower Cost Vertical Reference Units

Expect a Best in Class Performance with Each Miniature Vertical Reference Unit

  • Fully calibrated, temperature-compensated, and mathematically-aligned to an orthogonal coordinate system for highly accurate outputs
  • High-performance, low-cost solution
  • Precision mounting alignment features
  • Bias tracking, error estimation, threshold flags, and adaptive noise modeling
  • Bias tracking, error estimation, threshold flags, and adaptive noise modeling allow for fine tuning to conditions in each application

Ease of Use for These 3DM® -CV5-15 Units

  • Easy integration via comprehensive and fully backwards-compatible communication protocol
  • Robust, forward compatible MIP packet protocol
  • Common protocol between 3DM-GX3, GX4, RQ1, GQ4, GX5, and CV5

Cost Effectiveness

  • Out-of-the box solution reduces development time
  • Volume discounts

Features of Our Lower Cost Inertial Measurement Units

Provides a Best in Class Performance

  • High-performance, low-cost solution
  • Direct PCB mount or chassis mount with ribbon cable
  • Precision mounting alignment features
  • Fully calibrated, temperature-compensated, and mathematically-aligned to an orthogonal coordinate system for highly accurate outputs

 

Ease of Use for Each 3DM-CV5-10 Miniature Inertial Unit

  • Easy integration via comprehensive and fully backwards-compatible communication protocol
  • Robust, forward compatible MIP packet protocol
  • Common protocol between 3DM-GX3, GX4, RQ1, GQ4, GX5, and CV5

 

A Cost Effective Solution for Your Company

  • Out-of-the box solution reduces development time
  • Volume discounts available for these low cost inertial measurement units

Best in Class Performance

  • Fully calibrated, temperature-compensated, and mathematically-aligned to an orthogonal coordinate system for highly accurate outputs
  • Bias tracking, error estimation, threshold flags, and adaptive noise modeling allow for fine tuning to conditions in each application
  • High-performance, low-drift gyros with noise density of 0.005°/sec/√Hz and VRE of 0.001°/s/g2RMS
  • Accelerometer noise as low as 25 ug/√Hz

Ease of Use

  • User-defined sensor-to-vehicle frame transformation
  • Common protocol between 3DM-GX3, GX4, RQ1, GQ4, GX5, and CV5
  • Robust, forward compatible MIP packet protocol

Cost Effective

  • Out-of-the box solution reduces development time
  • Volume discounts

Best in Class Performance

  • Bias tracking, error estimation, threshold flags, and adaptive noise modeling allow for fine tuning to conditions in each application
  • Accelerometer noise as low as 25 ug/√Hz
  • Smallest and lightest industrial AHRS with Adaptive Kalman Filter available

Ease of Use

  • Automatic magnetometer calibration and anomaly rejection eliminates the need for field calibration
  • Automatically compensates for vehicle noise and vibration
  • Easy integration via comprehensive and fully backwards-compatible communication protocol
  • Common protocol between 3DM-GX3, GX4, RQ1, GQ4, GX5, and CV5 inertial sensor families for easy migration

Cost Effective

  • Out-of-the box solution reduces development time
  • Volume discounts

Best in Class Performance

  • Fully calibrated, temperature-compensated, and mathematically-aligned to an orthogonal coordinate system for highly accurate outputs
  • High performance, low drift gyros with noise density of 0.005°/sec/√Hz and VRE of 0.001°/s/g²2RMS
  • Accelerometer noise as low as 25 µg/√Hz
  • Common protocol between 3DM®-GX3, GX4, RQ1, GQ4, GX5, and CV5

Ease of Use

  • Automatic magnetometer calibration and anomaly rejection eliminates the need for field calibration
  • Automatically compensates for vehicle noise and vibration
  • Easy integration via comprehensive and fully backward-compatible communication protocol

Cost Effective

  • Out-of-the-box solution reduces development time
  • Volume discounts

Best in Class Performance

  • Fully calibrated, temperature-compensated, and mathematically aligned to an orthogonal coordinate system for highly accurate outputs
  • Bias tracking, error estimation, threshold flags, and adaptive noise, magnetic, and gravitational field modeling allow for fine tuning to conditions in each application
  • High performance, low drift gyros with noise density of 0.002°/sec/√Hz and VRE of 0.001°/s/g2RMS
  • Smaller and lighter than most tactical grade GNSS/INS units
  •  

    Ease of Use

  • User-defined sensor-to-vehicle frame transformation
  • Easy integration via comprehensive SDK
  • Common protocol between 3DM-GX3, GX4, RQ1, GQ4, GX5, and CV5
  •  

    Cost Effective

  • Out-of-the box solution reduces development time
  • High performance tactical grade outputs at an industrial grade price

Best in Class Performance

  • Fully calibrated, temperature compensated, and mathematically aligned to an orthogonal coordinate system for highly accurate outputs
  • Bias tracking, error estimation, threshold flags, and adaptive noise modeling allow for fine tuning to conditions in each application.

Ease of Use

  • Easy integration via comprehensive SDK
  • Common protocol with the 3DM-GX4® and 3DM-RQ1™ sensor families for easy migration

Cost Effective

  • Out-of-the box solution reduces development time.
  • Volume discounts

Pages

 

General

Integrated sensors

Triaxial accelerometer, triaxial gyroscope, and temperature sensors

Data outputs

Inertial Measurement Unit (IMU) outputs: acceleration, angular rate, delta theta, delta velocity

 

Inertial Measurement Unit (IMU) Sensor Outputs

 

Accelerometer

Gyroscope

Measurement range


±8 g (standard)
±2 g, ±4 g, ±20 g, ±40 g (optional)

300°/sec (standard)

±75, ±150, ±900°

/sec (optional)

Non-linearity

±0.02% fs

±0.02% fs

Resolution

0.02 mg (+/- 8 g)

0.003°/sec (300 dps)

Bias instability

±0.04 mg

8°/hr

Initial bias error

±0.002 g

±0.04°/sec

Scale factor stability

±0.03%

±0.05%

Noise density

25 µg/√Hz (2 g)

0.005°/sec/√Hz (300°/sec)

Alignment error

±0.05°

±0.05°

Adjustable bandwidth

225 Hz (max)

250 Hz (max)

Offset error over
temperature

0.06% (typ)

0.04% (typ)

Gain error over temperature

0.03% (typ)

0.03% (typ)

Scale factor non-linearity
(@ 25° C)

0.02% (typ)

0.06% (max)

 

0.02% (typ)

0.06% (max)

Vibration induced noise

--

0.072°/s RMS/g RMS

Vibration rectification error (VRE)

0.03%

0.001°/s/g2 RMS

IMU filtering

Digital sigma-delta wide band anti-aliasing filter to digital averaging filter (user adjustable) scaled into physical units.

Sampling rate

1 kHz

4 kHz

IMU data output rate

1 Hz to 1000 Hz

 

 

Specifications

General

Integrated sensors

Triaxial accelerometer, triaxial gyroscope, triaxial magnetometer,temperature sensors pressure sensor, and GNSS receiver

Data outputs

Inertial Measurement Unit (IMU) outputs: acceleration, angular rate, magnetic field , ambient pressure, Delta-theta, Delta-velocity

 

Complementary Filter (CF): attitude estimates (in Euler angles, quaternion, orientation matrix), stabilized north and gravity vectors, GNSS correlation timestamp

 

Global Navigation Satellite System outputs (GNSS): LLH position, ECEF position and velocity, NED velocity, UTC time, GNSS time, SV.GNSS protocol access mode available.

 

Inertial Measurement Unit (IMU) Sensor Outputs

 

Accelerometer

Gyroscope

Magnetometer

Measurement range

±8 g (standard)
±2 g, ±4 g, ±20 g, ±40 g (optional)

(standard)

±75, ±150,

±900 (optional)

±2.5 Gauss

Non-linearity

±0.02 fs

±0.02% fs

±0.3% fs

Resolution

<0.1 mg

<0.003°/sec

--

Bias instability

±0.04 mg

8°/hr

--

Initial bias error

±0.002 g

±0.04°/sec

±0.003 Gauss

Scale factor stability

0.03%

±0.05%

±0.1%

Noise density

25 µg/√Hz (2 g)

0.005°/sec/√Hz (300°/sec)

100 µGauss/√Hz

Alignment error

±0.05°

±0.05°

±0.05°

Adjustable bandwidth

225 Hz (max)

250 Hz (max)

-

Offset error over
temperature

0.06% (typ)

0.04% (typ)

--

Gain error over temperature

0.03% (typ)

0.03% (typ)

--

Scale factor non-linearity
(@ 25° C)

0.02% (typ)

0.06% (max)

0.02% (typ)

0.06% (max)

±0.0015 Gauss

Vibration induced noise

--

0.072°/s RMS/g RMS

--

Vibration rectification error (VRE)

--

0.001°/s/g2 RMS

--

IMU filtering

Digital sigma-delta wide band anti-aliasing filter to digital averaging filter (user adjustable) scaled into physical units.

Sampling rate

1 kHz

4 kHz

50 Hz

IMU data output rate

 

Pressure Sensor

Range

260 to 1260 hPa

Resolution

0.01 hPa

Noise

0.01 hPa RMS

Sampling rate

25 Hz

Computed Outputs

Attitude accuracy

 

CF outputs: ±0.5° roll, pitch, and heading (static, typ), ±2.0° roll, pitch, and heading (dynamic, typ)

Attitude heading range

360° about all axes

Attitude resolution

< 0.01°

Attitude repeatability

0.2° (typ)

Calculation update rate

500 Hz

Computed data output rate


CF outputs: 1 Hz to 1 kHz

Global Navigation Satellite System (GNSS) Outputs

Receiver type

72-channel GPS/QZSS L1 C/A, GLONASS L10F, BeiDou B1, SBAS L1 C/A:WAAS, EGNOS, MSAS Galileo E1B/C

GNSS data output rate

1 Hz to 4 Hz

Time-to-first-fix

Cold start: 27 second, reacquisition: 1 second, hot start: <1 second

Sensitivity

Tracking: -164 dBm, cold start: -147 dBm, hot start: -156 dBm

Velocity accuracy

0.1 m/sec

Heading accuracy

0.5°

Horizontal position accuracy

GNSS: 2.5 m CEP

SBAS: 2.0 m CEP

Time pulse signal accuracy

30 nsec RMS
< 60 nsec 99%

Acceleration limit

≤ 4 g

Altitude limit

50,000 meters

Velocity limit

500 m /sec (972 knots)

Operating Parameters

Communication

USB 2.0 (full speed)
RS232 (9,600 bps to 921,600 bps, default 115,200)

Power source

+4 to + 36 V dc V dc

Power consumption

700 mW (typ), 800 mW (max)

Operating temperature

-40 °C to +85 °C

Mechanical shock limit

500 g (calibration unaffected)
1000 g (bias may change), 5000 g (survivability)

MTBF

(TBD)

Physical Specifications

Dimensions

44.2 mm x 36.6 mm x 11 mm

Weight

20 grams

Enclosure material

Aluminum

Regulatory compliance

ROHS, CE

Integration

Connectors

Data/power output: micro-DB9

GNSS  antenna: MMCX type

Software

MIP Monitor, MIP Hard and Soft Iron Calibration, Windows XP/Vista/7/8/10 compatible

Compatibility

Protocol compatibility across 3DM-GX3, GX4, RQ1, GQ4, GX5 and CV5 product families

Software development kit (SDK)

MIP data communications protocol with sample code available (OS and platform independent)

General

 

Integrated sensors

Triaxial accelerometer, triaxial gyroscope, pressure altimeter,temperature sensors

Data outputs

Inertial Measurement Unit (IMU) outputs: acceleration, angular rate, magnetic field , ambient pressure, deltaTheta, deltaVelocity

 

Computed outputs:
Extended Kalman Filter (EKF): filter status, timestamp, attitude estimates (in Euler angles, quaternion, orientation matrix) , linear and compensated acceleration , bias compensated angular rate, pressure altitude, gravity-free linear acceleration, gyroscope and accelerometer bias, scale factors and uncertainties, gravity and magnetic models, and more.

 

Inertial Measurement Unit (IMU) Sensor Outputs

 

Accelerometer

Gyroscope

Magnetometer

Measurement range

±8 g (standard)
±2 g, ±4 g, ±20 g, ±40 g (optional)

±500°/sec(standard)

±250°, ±1000°/sec (optional)

±2.5 Gauss

Non-linearity

±0.04% fs

±0.06% fs

±0.3% fs

Resolution

0.05 mg (+/- 8 g)

<0.003°/sec (500 dps)

--

Bias instability

±0.04 mg

8°/hr

--

Initial bias error

±0.004 g

±0.1°/sec

±0.003 Gauss

Scale factor stability

±0.05±%

±0.05%

±0.1%

Noise density

100 µg/√Hz

0.0075°/sec/√Hz (300°/sec)

100 µGauss/√Hz

Alignment error

±0.05°

±0.05°

±0.05°

Adjustable bandwidth

500 Hz (max)

500 Hz (max)

-

Offset error over
temperature

0.2% (typ)

0.1% (typ)

--

Gain error over temperature

0.05% (typ)

0.06% (typ)

--

Scale factor non-linearity
(@ 25° C)

0.04% (typ)

0.2% (max)

0.04% (typ)

0.15% (max)

±0.0015 Gauss

IMU filtering

Digital averaging filter (user adjustable) sampled at 2 kHz and scaled into physical units ;coning and sculling integrals computed at 1 kHz

Sampling rate

2 kHz

2 kHz

50 Hz

IMU data output rate

1 Hz to 1000 Hz (sensor direct mode)

Pressure Altimeter

Range

-1800 m to 10,000 m

Resolution

< 0.1 m

Noise density

0.01 hPa RMS

Sampling rate

25 Hz

Computed Outputs

Attitude accuracy

EKF outputs: ±0.5° RMS roll and pitch, ±1° RMS heading (typ)

CF outputs: ±0.8° RMS roll and pitch, ±2° RMS heading (typ)

Attitude heading range

360° about all axes

Attitude resolution

0.05°

Attitude repeatability

0.5°

Calculation update rate

500 Hz

Computed data output rate

EKF outputs: 1 Hz to 500 Hz
CF outputs: 1 Hz to 500 Hz

Operating Parameters

Communication

USB 2.0 (full speed) TTL serial (3.0 V dc, 9,600 bps to 921,600 bps, default 115,200)

Power source

+ 3.2 to 5.2 V dc

350 mW (typical)         

350 mW (typ)

Operating temperature

-40 °C to +85 °C

Mechanical shock limit

500 g

Physical Specifications

Dimensions

38 mm x 24 mm x 9.7 mm

Weight

8 grams

Enclosure material

Aluminum

Regulatory compliance

ROHS, CE

Integration

Connectors

Data/power output: Samtec FTSH Series

(FTSH-105-01-F-D-K)

Software

MIP Monitor, MIP Hard and Soft Iron Calibration, Windows XP/Vista/7/8/10 compatible

Compatibility

Common protocol between 3DM-GX3, GX4, RQ1, GQ4, GX5, and CV5

Software development kit (SDK)

MIP data communications protocol with sample code available (OS and platform independent)

Specifications for the Inertial Measurement Unit Model 3DM-CV5-15

General

 

Integrated sensors

Triaxial accelerometer, triaxial gyroscope, temperature sensors, and pressure altimeter

Data outputs

Inertial Measurement Unit (IMU) outputs: acceleration, angular rate, ambient pressure, delta theta, delta velocity

 

Computed outputs:
Extended Kalman Filter (EKF):filter status, attitude estimates (Euler angles, quaternion, orientation matrix), bias compensated angular rate, pressure altitude, gravity-free linear acceleration, attitude uncertainties, gyroscope and accelerometer bias, scale factors and uncertainties, gravity models, and more.

Inertial Measurement Unit (IMU) Sensor Outputs

 

Accelerometer

Gyroscope

Measurement range


±8 g (standard)
±2 g, ±4 g (optional)

±500°/sec (standard)

±250°, ±1000°/sec (optional)

Non-linearity

±0.04% fs

0.06% fs

Resolution

0.05 mg (+/- 8 g)

<0.003°/sec

Bias instability

±0.04 mg

8°/hr

Initial bias error

±0.004 g

0.1°/sec

Scale factor stability

±0.05%

±0.05%

Noise density

100 µg/√Hz

0.0075°/sec/√Hz (300°/sec)

Alignment error

±0.05°

±0.05°

Adjustable bandwidth

500 Hz (max)

500 Hz (max)

Offset error over
temperature

0.2% (typ)

0.1% (typ)

Gain error over temperature

0.05% (typ)

0.06% (typ)

Scale factor non-linearity
(@ 25° C)

0.04% (typ)

0.2% (max)

0.04% (typ)

0.15% (max)

IMU filtering

Digital averaging filter (user adjustable) sampled at 2 kHz and scaled into physical units; coning and sculling integrals computed at 1 kHz

Sampling rate

2 kHz

2 kHz

IMU data output rate

1 Hz to 1000 Hz

Pressure Altimeter

Range

-1800 m to 10,000 m

Resolution

< 0.1 m

Noise density

0.01 hPa RMS

Sampling rate

25 Hz

Computed Outputs

Attitude accuracy

EKF outputs: ±0.5° RMS roll and pitch (typ)

CF outputs: ±0.8° RMS roll & pitch (typ)

Attitude heading range

360° about all axes

Attitude resolution

0.05°

Attitude repeatability

0.2° (typ)

Calculation update rate

500 Hz

Computed data output rate

EKF outputs: 1 Hz to 500 Hz
CF outputs: 1 Hz to 500 Hz

Operating Parameters

Communication

USB 2.0 (full speed) TTL serial (3.0 V dc, 9,600 bps to 921,600 bps, default 115,200)

Power source

+ 3.2 to 5.2 V dc

Power consumption

200 mW (typ)

Operating temperature

-40 °C to +85 °C

Mechanical shock limit

500 g (calibration unaffected)
1000 g (bias may change), 5000 g (survivability)

Physical Specifications

Dimensions

38 mm x 24 mm x 9.7 mm

Weight

8 grams

Enclosure material

Aluminum

Regulatory compliance

ROHS, CE

Integration

Connectors

Data/power output: Samtec FTSH Series

(FTSH-105-01-F-D-K)

Software

MIP Monitor, Windows XP/Vista/7/8/10 compatible

Compatibility

Common protocol between 3DM-GX3, GX4, RQ1, GQ4, GX5, and CV5

Software development kit (SDK)

MIP data communications protocol with sample code available (OS and platform independent)

Specifications for Each Miniature Inertial Measurement Unit

General

Integrated sensors

Triaxial accelerometer, triaxial gyroscope, and temperature sensors

Data outputs

Inertial Measurement Unit (IMU) outputs: acceleration, angular rate, delta theta, delta velocity

 

Inertial Measurement Unit (IMU) Sensor Outputs

 

Accelerometer

Gyroscope

Measurement range


±8 g (standard)
±2 g, ±4 g (optional)

±500°/sec (standard)

±250°, ±1000°/sec (optional)

Non-linearity

±0.04% fs

0.06% fs

Resolution

0.05 mg (+/- 8 g)

0.003°/sec (500 dps)

Bias instability

±0.04 mg

8°/hr

Initial bias error

±0.004 g

0.1°/sec

Scale factor stability

±0.05%

±0.05%

Noise density

100 µg/√Hz

0.0075°/sec/√Hz (300°/sec)

Alignment error

±0.05°

±0.05°

Adjustable bandwidth

500 Hz (max)

500 Hz (max)

Offset error over
temperature

0.2% (typ)

0.1% (typ)

Gain error over temperature

0.05% (typ)

0.06% (typ)

Scale factor non-linearity
(@ 25° C)

0.04% (typ)

0.2% (max)

0.04% (typ)

0.15% (max)

IMU filtering

Digital averaging filter (user adjustable) sampled at 2 kHz and scaled into physical units; coning and sculling integrals computed at 1 kHz

Sampling rate

2 kHz

2 kHz

IMU data output rate

1 Hz to 1000 Hz

Pressure Sensor

Range

260 to 1260 hPa

Resolution

0.01 hPa

Noise

0.01 hPa RMS

Sampling rate

25 Hz

Operating Parameters

Communication

TTL serial (3.0 V dc, 9,600 bps to 921,600 bps, default 115,200)

Power source

+ 3.2 to 5.2 V dc

Power consumption

350 mW (typ)

Operating temperature

-40 °C to +85 °C

Mechanical shock limit

500 g (calibration unaffected)
1000 g (bias may change), 5000 g (survivability)

Physical Specifications

Dimensions

38 mm x 24 mm x 9.7 mm

Weight

8 grams

Enclosure material

Aluminum

Regulatory compliance

ROHS, CE

Integration

Connectors

Data/power output: Samtec FTSH Series

(FTSH-105-01-F-D-K)

Software

MIP Monitor, Windows XP/Vista/7/8/10 compatible

Compatibility

Common protocol between 3DM-GX3, GX4, RQ1, GQ4, GX5, and CV5

Software development kit (SDK)

MIP data communications protocol with sample code available (OS and platform independent)

General

Integrated sensors

Triaxial accelerometer, triaxial gyroscope, temperature sensors , and pressure altimeter

Data outputs

Inertial Measurement Unit (IMU) outputs: acceleration, angular rate, ambient pressure, deltaTheta, deltaVelocity

 

Computed outputs:
Extended Kalman Filter (EKF):filter status, attitude estimates (Euler angles, quaternion, orientation matrix) , bias compensated angular rate, pressure altitude, gravity-free linear acceleration, attitude uncertainties, gyroscope and accelerometer bias, scale factors and uncertainties, gravity models, and more.

Inertial Measurement Unit (IMU) Sensor Outputs

 

Accelerometer

Gyroscope

Measurement range


±8 g (standard)
±2 g, ±4 g
, ±20 g, ±40 g (optional)

300°/sec (standard)

±75, ±150, ±900°

/sec (optional)

Non-linearity

±0.02% fs

±0.02% fs

Resolution

0.02 mg (+/- 8 g)

0.003°/sec (300 dps)

Bias instability

±0.04 mg

8°/hr

Initial bias error

±0.002 g

±0.04°/sec

Scale factor stability

±0.03%

±0.05%

Noise density

25 µg/√Hz (2 g)

0.005°/sec/√Hz 0.005°/sec/√Hz (300°/sec)

Alignment error

±0.05°

±0.05°

Adjustable bandwidth

225 Hz (max)

250 Hz (max)

Offset error over
temperature

0.06% (typ)

0.04% (typ)

Gain error over temperature

0.03% (typ)

0.03% (typ)

Scale factor non-linearity
(@ 25° C)

0.02% (typ)

0.06% (max)

0.02% (typ)

0.06% (max)

Vibration induced noise

--

0.072°/s RMS/g RMS

Vibration rectification error (VRE)

-- 0.03%

-- 0.001°/s/g2 RMS

IMU filtering

Digital sigma-delta wide band anti-aliasing filter to digital averaging filter (user adjustable) scaled into physical units ; coning and sculling integrals computed at 1 kHz

Sampling rate

1 kHz

4 kHz

IMU data output rate

1 Hz to 1000 Hz

Pressure Altimeter

Range

-1800 m to 10,000 m

Resolution

< 0.1 m

Noise density

0.01 hPa RMS

Sampling rate

25 Hz

Compatibility

Common protocol between 3DM-GX3, GX4, RQ1, GQ4, GX5, and CV5





General

Integrated sensors

Triaxial accelerometer, triaxial gyroscope, triaxial magnetometer, pressure altimeter, and temperature sensors

Data outputs

Inertial Measurement Unit (IMU) outputs: acceleration, angular rate, magnetic field , ambient pressure, deltaTheta, deltaVelocity

 

Computed outputs:
Extended Kalman Filter (EKF): filter status, timestamp, attitude estimates (in Euler angles, quaternion, orientation matrix), linear and compensated acceleration, bias compensated angular rate, pressure altitude, gravity-free linear acceleration, gyroscope and accelerometer bias, scale factors and uncertainties, gravity and magnetic models, and more.

Inertial Measurement Unit (IMU) Sensor Outputs

 

Accelerometer

Gyroscope

Magnetometer

Measurement range

±8 g (standard)
±2 g, ±4 g, ±20 g, ±40 g (optional)

300°/sec (standard)

±75, ±150,

±900 °/sec (optional)

±2.5 Gauss

Non-linearity

±0.02 % fs

±0.02 % fs

±0.3 % fs

Resolution

<0.1 mg

<0.003°/sec

--

Bias instability

±0.04 mg

8°/hr

--

Initial bias error

±0.002 g

±0.04°/sec

±0.003 Gauss

Scale factor stability

±0.03%

±0.05%

±0.1%

Noise density

25 µg/√Hz (2 g)

0.005°/sec/√Hz (300 dps)

100 µGauss/√Hz

Alignment error

±0.05°

±0.05°

±0.05°

Adjustable bandwidth

225 Hz (max)

250 Hz (max)

-

Offset error over
temperature

0.06% (typ)

0.04% (typ)

--

Gain error over temperature

0.03% (typ)

0.03% (typ)

--

Scale factor non-linearity
(@ 25° C)

0.02% (typ)

0.06% (max)

0.02% (typ)

0.06% (max)

±0.0015 Gauss

Vibration induced noise

--

0.072°/s RMS/g RMS

--

Vibration rectification error (VRE)

--

0.001°/s/g2 RMS

--

IMU filtering

Digital sigma-delta wide band anti-aliasing filter to digital averaging filter (user adjustable) scaled into physical units; coning and sculling integrals computed at 1 kHz

Sampling rate

1 kHz

4 kHz

50 Hz

IMU data output rate

1 Hz to 1 kHz

Pressure Altimeter

Range

-1800 m to 10,000 m

Resolution

< 0.1 m

Noise density

0.01 hPa RMS

Sampling rate

25 Hz



Computed Outputs

Attitude accuracy

EKF outputs: ±0.25° RMS roll and pitch, ±0.8° RMS heading (typ)

CF outputs: ±0.5° RMS roll and pitch, ±1.5° RMS heading (typ)

Attitude heading range

360° about all axes

Attitude resolution

< 0.01°

Attitude repeatability

0.2° (typ)

Calculation update rate

500 Hz

Computed data output rate

EKF outputs: 1 Hz to 500 Hz
CF outputs: 1 Hz to 500 Hz

Operating Parameters

Communication

USB 2.0 (full speed)
RS232 (9,600 bps to 921,600 bps, default 115,200)

Power source

+4 to + 36 V dc

Power consumption

500 mW (typ)

Operating temperature

-40 °C to +85 °C

Mechanical shock limit

500 g (calibration unaffected)
1000 g (bias may change), 5000 g (survivability)

MTBF

(TBD)

Physical Specifications

Dimensions

36.0 mm x 36.6 mm x 11.1 mm

Weight

16.5 grams

Enclosure material

Aluminum

Regulatory compliance

ROHS, CE

Integration

Connectors

Data/power output: micro-DB9

Software

MIP Monitor, Windows XP/Vista/7/8/10 compatible

Compatibility

Protocol compatibility across 3DM-GX3, GX4, RQ1, GQ1, GX5, and CV5 product families

Software development kit (SDK)

MIP data communications protocol with sample code available (OS and platform independent)





General

Integrated sensors

Triaxial accelerometer, triaxial gyroscope, triaxial magnetometer, pressure altimeter,temperature sensors and GNSS receiver

Data outputs

Inertial Measurement Unit (IMU) outputs: acceleration, angular rate, magnetic field , ambient pressure, deltaTheta, deltaVelocity

 

Computed outputs:
Extended Kalman Filter (EKF): filter status, GNSS timestamp, LLH position, NED velocity, attitude estimates (in Euler angles, quaternion, orientation matrix), linear and compensated acceleration, bias compensated angular rate, pressure altitude, gyroscope and accelerometer bias, scale factors and uncertainties, gravity and magnetic models, and more. Complementary Filter (CF): attitude estimates (in Euler angles, quaternion, orientation matrix), stabilizednorth and gravity vectors, GNSS correlation timestamp

 

Global Navigation Satellite System outputs (GNSS): LLH position, ECEF position and velocity, NED velocity, UTC time, GNSS time, SV.GNSS protocol access mode available.

Inertial Measurement Unit (IMU) Sensor Outputs

 

Accelerometer

Gyroscope

Magnetometer

Measurement range

±8 g (standard)
±2 g, ±4 g, ±20 g, ±40 g (optional)

300°/sec (standard)

±75, ±150,

±900 °/sec (optional)

±2.5 Gauss

Non-linearity

±0.02 % fs

±0.02 % fs

±0.3 % fs

Resolution

<0.1 mg

<0.003°/sec

--

Bias instability

±0.04 mg

8°/hr

--

Initial bias error

±0.002 g

±0.04°/sec

±0.003 Gauss

Scale factor stability

±0.03%

±0.05%

±0.1%

Noise density

25 µg/√Hz (2 g)

0.005°/sec/√Hz (300 dps)

100 µGauss/√Hz

Alignment error

±0.05°

±0.05°

±0.05°

Adjustable bandwidth

225 Hz (max)

250 Hz (max)

-

Offset error over
temperature

0.06% (typ)

0.04% (typ)

--

Gain error over temperature

0.03% (typ)

0.03% (typ)

--

Scale factor non-linearity
(@ 25° C)

0.02% (typ)

0.06% (max)

0.02% (typ)

0.06% (max)

±0.0015 Gauss

Vibration induced noise

--

0.072°/s RMS/g RMS

--

Vibration rectification error (VRE)

--

0.001°/s/g2 RMS

--

IMU filtering

Digital sigma-delta wide band anti-aliasing filter to digital averaging filter (user adjustable) scaled into physical units; coning and sculling integrals computed at 1 kHz

Sampling rate

1 kHz

4 kHz

50 Hz

IMU data output rate

1 Hz to 1000 Hz

Pressure Altimeter

Range

-1800 m to 10,000 m

Resolution

< 0.1 m

Noise density

0.01 hPa RMS

Sampling rate

25 Hz



Computed Outputs

Position accuracy

±2 m RMS horizontal, ± 5 m RMS vertical (typ)

Velocity accuracy

±0.1 m/s RMS (typ)

Attitude accuracy

EKF outputs: ±0.25° RMS roll and pitch, ±0.8° RMS heading (typ)

CF outputs: ±0.5° roll, pitch, and heading (static, typ), ±2.0° roll, pitch, and heading (dynamic, typ)

Attitude heading range

360° about all axes

Attitude resolution

< 0.01°

Attitude repeatability

0.2° (typ)

Calculation update rate

500 Hz

Computed data output rate

EKF outputs: 1 Hz to 500 Hz
CF outputs: 1 Hz to 1000 Hz

Global Navigation Satellite System (GNSS) Outputs

Receiver type

72-channel GPS/QZSS L1 C/A, GLONASS L10F, BeiDou B1, SBAS L1 C/A:WAAS, EGNOS, MSAS Galileo E1B/C

GNSS data output rate

1 Hz to 4 Hz

Time-to-first-fix

Cold start: 27 second, reacquisition: 1 second, hot start: <1 second

Sensitivity

Tracking: -164 dBm, cold start: -147 dBm, hot start: -156 dBm

Velocity accuracy

0.1 m/sec

Heading accuracy

0.5°

Horizontal position accuracy

GNSS: 2.5 m CEP

SBAS: 2.0 m CEP

Time pulse signal accuracy

30 nsec RMS
< 60 nsec 99%

Acceleration limit

≤ 4 g

Altitude limit

No limit

Velocity limit

500 m/sec (972 knots)

Operating Parameters

Communication

USB 2.0 (full speed)
RS232 (9,600 bps to 921,600 bps, default 115,200)

Power source

+4 to + 36 V dc

Power consumption

700 mW (typ), 800 mW (max)

Operating temperature

-40 °C to +85 °C

 

Mechanical shock limit

500 g (calibration unaffected)
1000 g (bias may change), 5000 g (survivability)

MTBF

(TBD)

Physical Specifications

Dimensions

44.2 mm x 36.6 mm x 11 mm

Weight

20 grams

Enclosure material

Aluminum

Regulatory compliance

ROHS, CE

Integration

Connectors

Data/power output: micro-DB9

GNSS  antenna:MMCX type

Software

MIP Monitor, MIP Hard and Soft Iron Calibration, Windows XP/Vista/7/8/10 compatible

Compatibility

Common protocol between 3DM-GX3, GX4, RQ1, GQ4, GX5, and CV5

Software development kit (SDK)

MIP data communications protocol with sample code available (OS and platform independent)

General

Integrated sensors

Triaxial accelerometer, triaxial gyroscope, triaxial magnetometer, temperature sensors, pressure altimeter, and GPS receiver

Data outputs

Inertial Measurement Unit (IMU) outputs: acceleration, angular rate, ambient pressure, deltaTheta, deltaVelocity

Computed outputs:

Extended Kalman Filter (EKF): filter status, GPS timestamp, LLH position, NED velocity, attitude estimates (in Euler angles, quaternion, orientation matrix), bias compensated angular rate, pressure altitude, gravity-free linear acceleration, gyroscope and accelerometer bias, scale factors and uncertainties, gravity and magnetic models, and more. Complementary Filter (CF): attitude estimates (in Euler angles, quaternion, orientation matrix), stabilized north and gravity vectors, GPS correlation timestamp

Global Positioning System outputs (GPS): LLH position, ECEF position and velocity, NED velocity, UTC time, GPS time, SV. GPS protocol access mode available.

Inertial Measurement Unit (IMU) Sensor Outputs

 

Accelerometer

Gyroscope

Magnetometer

Measurement range

±5 g

300°/sec (standard)

±75, ±150, ±900°/sec (options)

±2.5 Gauss

Non-linearity

±0.03 % fs

±0.03 % fs

±0.4 % fs

Resolution

<0.04 mg

<0.0025°/sec

--

Bias instability

±0.02 mg

5°/hr

--

Initial bias error

±0.001 g

±0.05°/sec ±0.003 Gauss

Scale factor stability

±0.05 %

±0.05 %

±0.1 %

Noise density

50 µg/Hz

0.002°/sec/Hz

100 µGauss/Hz

Alignment error

±0.05°

±0.05° ±0.05°

Adjustable bandwidth

250 Hz (max)

160 Hz (max) --

IMU filtering

4 stage filtering: analog bandwidth filter to digital sigma- delta wide band anti-aliasing filter to (user adjustable) digital averaging filter sampled at 8 kHz and scaled into physical units; coning and sculling integrals computed at 1 kHz

Sampling rate

10 kHz

10 kHz

50 Hz

IMU data output rate

1 Hz to 500 Hz

Pressure Altimeter

Range

-1800 m to 10,000 m

Resolution

< 0.1 m

Noise density

0.01 hPa RMS

Sampling rate

25 Hz

Computed Outputs

Position accuracy

±2.5 m RMS horizontal, ± 5 m RMS vertical (typ)

Velocity accuracy

±0.1 m/s RMS (typ)

Attitude accuracy

±0.1° RMS roll & pitch, ±0.5° RMS heading (typ)

Attitude heading range

360° about all axes

Attitude resolution

< 0.01°

Repeatability

0.1° (typ)

Calculation update rate

500 Hz

Computed data output rate

1 Hz to 500 Hz

Global Navigation Satellite System (GNSS) Outputs

Receiver type

72-channel GPS/QZSS L1 C/A, GLONASS L10F, BeiDou B1, SBAS L1 C/A:WAAS, EGNOS, MSAS Galileo-ready E1B/C

GNSS data output rate

1 Hz to 4 Hz

Time-to-first-fix

Cold start: 27 sec, reacquisition: 1 sec hot start: <1 sec

Sensitivity

Tracking: -164 dBm, cold start: -147 dBm, hot start: -156 dBm

Velocity accuracy

0.1 m/sec

Heading accuracy

0.5°

Horizontal position accuracy

GNSS: 2.5 m CEP (autonomous)

SBAS: 2.0 m CEP (stationary, 24 hours, SEP 3.5 m)

Time pulse signal accuracy

30 nsec RMS

< 60 nsec 99%

Acceleration limit

≤ g

Altitude limit

No limit

Velocity limit

500 m/sec (972 knots)

Operating Parameters

Communication

USB 2.0 (full speed)

RS232 (9,600 bps to 921,600 bps, default 115,200)

Power source

+ 4.2 to + 28 V dc

Power consumption

2.5 W (-40 °C to +85 °C)

Operating temperature

-40 °C to +85 °C

Vibration limit

RMS, 10 Hz to2 kHz

Mechanical shock limit

750 (half-sine, 2 msec powered, any axis)

Physical Specifications

Dimensions

79 mm x 77 mm x 23 mm

Weight

105 grams

Enclosure material

Aluminium

Regulatory compliance

ROHS, FCC Class B, CE

Integration

Connectors

Data/power output: micro-DB9

GPS antenna: MMCX type

Software

MIP™ Monitor, MIP™ Hard and Soft Iron Calibration, Windows XP/Vista/7/8 compatible

Compatibility

Common protocol between 3DM-GX3, GX4, RQ1, GQ4, GX5, and CV5

Software development kit (SDK)

MIP™ data communications protocol with sample code available (OS and computing platform independent)

 

General

Integrated sensors

Triaxial accelerometer, triaxial gyroscope, triaxial magnetometer, and temperature sensors,

Data outputs

Inertial Measurement Unit (IMU) outputs: acceleration, angular rate, magnetic field , deltaTheta, deltaVelocity

Computed outputs: attitude estimates (in Euler angles, quaternion, orientation matrix),

Resolution

16 bit SAR oversampled to 17 bits

Inertial Measurement Unit (IMU) Sensor Outputs

 

Accelerometer

Gyroscope

Magnetometer

Measurement range

±5 g (standard)

±1.7±16, and ±50 g (option)

300°/sec (standard)

±50, ±600,±1200 °/sec (options)

±2.5 Gauss

Non-linearity

±0.1 % fs

±0.03 % fs

±0.4 % fs

Bias instability

±0.04 mg

18°/hr

--

Initial bias error

±0.002 g

±0.25°/sec

±0.003 Gauss

Scale factor stability

±0.05 %

±0.05 %

±0.1 %

Noise density

80 µg/Hz

0.03°/sec/Hz

100

µGauss/Hz

Alignment error

±0.05°

±0.05°

±0.05°

Adjustable bandwidth

225 Hz (max)

440 Hz (max)

230 Hz (max)

IMU filtering

Digitally filtered (user adjustable) and scaled to physical input; coning and sculling integrals computed at 1 kHz

Sampling rate

30 kHz

30 kHz

7.5 kHz

IMU data output rate

1 Hz to 1000 Hz

Computed Outputs

Attitude accuracy

±0.5° roll, pitch, and heading (static, typ), ±2.0° roll, pitch, and heading (dynamic, typ)

Attitude heading range

360° about all axes

Attitude resolution

< 0.01°

Attitude repeatability

0.2° (typ)

Calculation update rate

1000 Hz

Computed data output rate

1 Hz to 500 Hz

Operating Parameters

Communication

USB 2.0, TTL (3.3 V dc, 9,600 bps to 921,600 bps, default 115,200)

Power source

+ 3.1 to + 5.5 V dc

Power consumption

80 mA at 5 V dc (USB)

Operating temperature

-40 °C to +70 °C

Mechanical shock limit

500 g

Physical Specifications

Dimensions

38 mm x 24 mm x 11.6 mm

Weight

11.6 grams

Regulatory compliance

ROHS

Integration

Connectors

Data/power output: Samtec FTSH Series

(FTSH-105-01-F-D-K)

Software

MIPMonitor, Windows XP/Vista/7/8 compatible

Compatibility

Protocol compatibility with 3DM-RQ1and 3DM- GX4® sensor families.

Software development kit (SDK)

MIPdata communications protocol with sample code available (OS and computing platform independent)

 

Pages

General Documentation

Inertial Sensor Analysis Tool

Technical Notes

Mechanical Drawings (Uncontrolled)

General Documentation

Technical Notes

Software Development Kit

Mechanical Drawings (Uncontrolled)

Inertial Sensor Analysis Tool

Product Documentation for the 3DM-CV5-15

General Documentation

Technical Notes for Our Inertial Measurement Units

Software Development Kit

Mechanical Drawings (Uncontrolled)

Inertial Sensor Analysis Tool

General Documentation

Technical Notes for the 3DM-CV5-10 Miniature Inertial Measurement Units

Software Development Kit

Mechanical Drawings (Uncontrolled)

Inertial Sensor Analysis Tool

General Documentation

Technical Notes

Software Development Kit

Mechanical Drawings (Uncontrolled)

Inertial Sensor Analysis Tool

General Documentation

Technical Notes

Software Development Kit

Mechanical Drawings (Uncontrolled)

Inertial Sensor Analysis Tool

General Documentation

Technical Notes

Software Development Kit

Mechanical Drawings (Uncontrolled)

Inertial Sensor Analysis Tool

General Documentation

Technical Notes

Mechanical Prints (Uncontrolled)

Video

Pages

Please fill out the following form.
If you would like to speak to someone directly call 802-862-6629.